
Actions Tech. Note 4
Draft 1.0

Understanding Action Parameters
Freeway 3.0 supports a JavaScript API for Freeway actions. Using this API you can access
parameters that the user sets in the interface and use values drawn from the parameters in your
code.

Basic Parameter Access

If in your code you have a parameter

<action-number name="PNum">

You can access your parameters within your action as normal parameters as you can any
JavaScript parameter.

var pNum = fwParameters.PNum

and also as

var pNum = fwParameters["PNum"]

The later form being very useful if you have actions with spaces in the names. For example if
you have a parameter:

<action-number name="Pig Num">

Accessing it as follows

var pNum = fwParameters["Pig Num"]

Is both readable and convenient - and represents no speed penalty in access.

Being able to access the parameter as a string means that you can construct the string yourself if
you need to. So for an action with the following parameters.

<action-number name="Pig 1">
<action-number name="Pig 2">
<action-number name="Pig 3">
<action-number name="Pig 4">
<action-number name="Pig 5">
<action-number name="Pig 6">

You can construct a loop that loops through all of them as follows:

for (var i = 1 ; i <=6 ; i++)
{

var pNum = fwParameters["Pig "+i];
:
:

}

The Parameter list.

All the parameters that belong to an action are available from the fwParameters property of the
action. This property is a list of all the parameters and facilitates indexed access, as do all the lists
within Freeway. The list is contiguous and zero-based, so the first element in the list is element
'0', and there are no gaps between the first and last element in the list.

To access the first parameter you could write.

var pNum = fwParameters[0];

The fwLength property of the list is the total number of elements in the list. You should bear this
in mind when writing actions. If you use this property it is best to avoid giving any action
parameter the name of fwLength as it is sure to cause you problems and confusion. Using the
fwLength property you could iterate through all parameters as follows:

for (var i = 0 ; i < fwLength ; i++)
{

var param = fwParameters[i];
:
:

}

You can also use the JavaScript loop construct designed for this purpose.

for (var i in fwParameters)
{

var param = fwParameters[i];
:
:

}

The Parameters

The items in fwParameters the parameter list are parameter objects they are not values. This
distinction is important as it is quite easy to mistakenly get the idea that say:

fwParameters["foobar"];

will give you the value of whatever the user entered into the parameter "foobar". It will not it
will give you the parameter object that contains whatever the user entered. The situation is
slightly confused by the fact that JavaScript is very good at coercing values to strings. If you do
something like:

alert(fwParameters["foobar"]);

The JavaScript will take the parameter object fwParameters["foobar"] , and then call it's
toString method automatically as the alert method requires a string. In 99% of cases this will
be what you want - however it is not always.

An easy point of confusion is the example where the user has entered nothing into the
parameter foobar, and you want to test for it in your code. The code

if (fwParameters["foobar"])
alert("has value");

else
alert("No value");

Will always return "has value" this is because the line fwParameters["foobar"] , will return the
parameter object, that object will never be null, or the empty string or zero, so the alert("No
value") code will never be executed. In this case you will have to either execute the toString
method yourself

if (fwParameters["foobar"].toString())
alert("has value");

else
alert("No value");

or compare it with the empty string, in which case JavaScript will call the toString method it's
self in order to compare it to the empty string.

if (fwParameters["foobar"]=="")
alert("has value");

else
alert("No value");

Parameter Types

The parameter object can be one of four types, according to how it has been specified in the
action.

fwText from <action-text>
& <action-number>
& <action-popup>
& <action-checkbox>

fwLink from <action-url>
fwFile from <action-file>
fwColor from <action-color>
fwImage from <action-image>

You can discover the type of a particular parameter from the fwType property. So, for example,
the following code will return all the fwLink parameter objects

for (var i in fwParameters)
{

param = fwParameters[i];

if (param.fwType=="fwLink")
alert(param.fwName)

}

The actual value set by the user is accessible from the parameters fwValue property. The type of
this property varies according to the type of the parameter.

fwText string
fwLink FWLink object
fwColor FWColor object
fwFile calls toString()
fwImage calls toString()

You can see that for fwFile and fwImage the toString method is called. This is because neither
the fwFile or fwImage have objects so this method will just do the best that it can.

Text Parameters

The parameters of fwText behave much as you would expect. If you want to get the value of
the parameter the fwValue will return the text, and you can set it by setting the value. So if you
wanted for a parameter to have the value of "goat" you would do this.

fwParameters["foobar"]="goat";

The user interface would then reflect this next time the action interface is updated, and this
parameter will be saved with the document.

Link Parameters

These parameters represent URLs. The fwValue will return a FWLink object. You can not change
the object that the fwValue will return, but you can change the values within this object - this
means, for example, you can change the parameter so that it will link to a particular page.
Consider the following code fragment - it will change the link so that it is linked to the page
after the current one.

// get the next page
var nextPage = fwFolder.fwNextPage(fwPage);

// set "foobar" parameter to that page
fwParameters["foobar"].fwValue.fwInternal = nextPage ;

If you want to get the page object the is linked to you would do the following:

var currPage = fwParameters["foobar"].fwValue.fwInternal;

This will give you the actual page - and you can then (if you need to) traverse the objects on
that page, getting text (or whatever else you need) from that page for use in your action.

If however you want the string required to make a link relative to the page on which the action
is can do:

var linkStr = fwParameters["foobar"].fwValue.toString();

or

var linkStr = fwParameters["foobar"].toString();

or use the fwParameters["foobar"] parameter in a situation where JavaScript will coerce the
link automatically and you will get the value that you need.

Color Parameters

Color parameters are a little different again. The fwValue will return the color object. All color
objects are objects within the Freeway document and you can not change these objects within
an action. What you can do is change the fwValue so that it accesses a different color object. You
could, for example, get this color object from the documents fwColors .

If you call the toString method of a color object it will return the name of the color. This also
means that of you call the toString method of the parameter object you will get the name of
the colour. Unfortunately in most situations this is not useful.

If you want to get the hex string of a color you will have to access the fwHex method of the color
parameter

var param = fwParameters["my colour"]; // get the parameter object

var colourStr = param.fwValue.fwHex; // get the colour

It is worth pointing out that a color does not always have a hex value. You can have a colour
that is set to none. You can most easily check for this by checking the fwHasValue property of
the colour.

var param = fwParameters["my colour"]; // get the parameter object
var colour = param.fwValue; // get the colour

if (colour.fwHasValue)
alert("hex value = ", colour.fwHex);

else
alert("no value for this colour");

If you need the RGB values of a colour you can get them from the fwValue property. This will
return a JavaScript object with the properties red, green and blue that you can then use.

var param = fwParameters["my colour"]; // get the parameter object
var colour = param.fwValue; // get the colour
var rgb = colour.fwValue;
alert('"'+rgb.red+','+rgb.green+','+rgb.blue+'"');

File Parameters

The file parameter allows the user to specify a file in the interface. There is no file-object
associated with this. Accessing the fwValue property will effectively call the toString method of
the object. There is no provision to set the object through the fwValue property.

The toString method of the object will return the relative path of the file relative to the page on
which the action resides. If you need to specify a file programatically you can do so using the
fwSpecify method. This method is only defined for the file parameter. It is most useful in that it
allows you to specify a file that is either another file parameter or if your code has created a
FWFile object.

File parameters can upload files but they will not do so unless you trigger this. A file specified in
a file parameter will not be uploaded unless the action resolves the file name, or the file name is
resolved within the action. This resolution will be caused by the name of the file being asked
for. So you can easily trigger this by calling the toString method of the parameter. Additionally
if the parameter is referenced outside of JavaScript this will also cause it to be uploaded. In
practice this means that files are generally uploaded automatically as you will generally want to
use the filepath of an action within the action. What this means in practice is that even if you do
not want to use the file-path in the action you should still call toString even though you will not
use the results.

Image Parameters

Image parameters are a sub-class of file parameters. As a user you can use them as file
parameters (to specify GIF or JPEG files), but you can also use them to specify image that are
generated within freeway. The highest profile use of them is the rollovers in Freeway. These
allow you to specify images by turning on and off images that overlap each other.

The image parameter supports all the method of the file parameter so it is possible for you to
use them in the same way - however the story of using these things properly is a bit more
complex.

The additional complexity with image parameters is that an image can be sliced. If you consider
the following action.

<item-action name="Test">
<action-image name="image 1">
</item-action>

applied to a graphic that is cut into three by overlapping HTML boxes

You can see that the image parameter will actually have three graphics associated with it - one
for each slice.

On the other hand if you associate a file with the parameter there will be just a single file
associated with it.

Within your Freeway Action the way to handle this situation is to use the fwFindAllImages
method.

var images = fwParameters["image 1"].fwFindAllImages();

This method will return an array of all the images that are defined for the parameter. If the
parameter has no image set the array will be empty (will have no elements), if the parameter
has a file set then the array will have the path of just that one image. If the parameter has a
number of images (due to the image being sliced) then it will contain an element for each slice.

In your code you should account, and test, that your action works correctly when the image is
sliced and when the image has a single image file. If you are careful you can do things like write
a rollover that will work properly even when an image is sliced - so that, for example, all parts
of the rollover will rollover together.

A sliced Rollover

Normal "rest" state

MouseOver state - both slices rolover together.

