
Freeway JavaScript Reference
Edition 1

1

Freeway JavaScript Reference

Using this document

If you are familiar with writing Actions for Freeway 3 then you may find
these software engineer’s notes useful. If you are new to writing Actions for
Freeway and would like to attempt to write your own Actions, then work
through the ‘Writing Freeway Actions’ PDF (Writing FW Actions.pdf)
supplied on the Freeway CD (and copied to your Freeway folder on
Freeway installation) first. As and when this document is updated,
downloadable copies will be made available via the SoftPress Web site.

Specific Properties and User Methods

Global Properties and Methods

These properties and user methods are global and are not attached to a
particular object.

Properties (3)

fwFreewayVersion (read only)
This returns a string with the version of Freeway that is running.

fwRegion (read only)
This returns the region code to which Freeway is currently localized. In a
dual-language build such as Freeway 3J, which has an interface that can
be switched between English and Japanese, it will return the region of the
current interface. For a full list of regions see the support document
“Localising Freeway Actions” on the Actions web site.

2

Examples:

if (fwRegion==0)
alert("Freeway is localised for the United States.");

else
alert("Freeway is NOT localised for the United States.");

or
if (fwRegion==14)

alert("Freeway is localised for Japan.");
else

alert("Freeway is NOT localised for Japan.");

fwTimeout (read/write)
This is the interval in 60ths of a second that can elapse before the
JavaScript interpreter automatically terminates a JavaScript interface
method in your Action. You should avoid writing code which takes so long
to execute that it will time out. So this value is unlikely to need changing,
the default is 5 seconds (5 !60). Effectively, you should not need to alter
this default – fix your code instead!

Example:

// set the timeout to 10 seconds
fwTimeout=10*60;

Methods

alert(string[,string])
This will cause Freeway to put a dialog box on your screen displaying the
text passed in. The dialog One or more strings has an OK and an Abort
button. Clicking on the Abort button will cause execution of the JavaScript
to abort.

The internal timer, which times out interface methods when they exceed the
limit set in the global property fwTimeout, is paused during the execution of
this method.

Note: This method differs from the alert method that is present within the JavaScript of
most browsers in that it accepts multiple arguments separated by commas.

Examples

3

alert("Hello")
causes an alert dialog box with the text “Hello" to appear.

alert(1+2);
(non-string or numerical parameter) causes an alert dialog box with the text

"3" to appear.

alert("My name is ","Gustav.");
causes an alert dialog with the text "My name is Gustav." to appear
(concatenating the strings).

confirm(string[,string])
This will cause Freeway to put a dialog box up on your screen displaying
the text that is passed one or more strings in the parameters. The dialog
has an OK button, a Cancel button and an Abort button.

The method returns true if the user clicks on the OK button but if the user
clicks Cancel it returns false. Clicking on the Abort button will cause
execution of the JavaScript to abort. If you are building a site then the build
process will stop in the same way as if you had clicked on the Stop button
in the Progress dialog when publishing.

The internal timer, which times out interface methods that exceed the limit
set in the global property fwTimeout is paused during the execution of this
method.

Note: This method differs from the confirm method that is present within the
JavaScript of most browsers in that it accepts multiple arguments separated by commas.

Examples:

4

confirm("It is a nice day?");
Causes a confirm dialog with the text "It is a nice day?" to appear:

confirm("Your name is ","Gustav?");
Causes a confirm dialog with the text "Your name is Gustav?" to
appear.

fwAbort(string[,string])
This method will cause the publishing process to be aborted. It should only
be called while you One or more strings are publishing and do not want to
continue uploading. The strings passed will be concatenated together and
non-string parameters converted to strings, and posted as an alert. The
effect of this is the same as someone manually aborting publishing. It is
not possible to abort publishing without the dialog appearing. You might
use this in the case of an error occurring.

5

Example:

The following Action will abort publishing, with the message as shown in
the dialog box

<item-action name="test">
<action-javascript>

function fwAfterEndBody()
{

fwAbort("Your coat is to dark for publishing to continue.");
}

</action-javascript>
</item-action>

fwEncode(string[,page][,delimiters])
This method will convert the string into the encoding specified for the page.
The string that is returned is in an encoded form, suitable for use in the
HTML on the page specified. For example, if the page is set to “ISO8859-
1” encoding, the text will be converted to that specific encoding for this
page, allowing coding to be consistent with the current page. This means
that the text will be correctly encoded if the page is, for example, Japanese.
It will also ensure that special characters are correctly translated into the
required HTML. If no page is passed it will merely ensure that special
characters are correctly translated.

Arguments:

string: The string to be encoded

page (optional)
The encoding for this page will be used to encode the stringdelimiters
(optional)the returned string will be delimited by these characters

Example:

The following code adds the markup for a text area. It uses fwEncode to
produce an encoded form of the value parameter in the output.

6

function addTextArea(name, value)
{

// this adds the code and encodes the value
// appropriately
// <textarea ‘name= name value> </textarea>

fwDocument.fwWrite("<textarea name = ‘", name, "’>",
fwEncode(value, fwPage),
"</textarea>");

}

fwQuote(string[, newQuote[, oldQuote]])
This method allows you to return a string in its quoted form. Now if you
pass in the original quotes it will remove them (if present) and replace them
with the new ones you have defined. This function is particularly useful if
you are retrieving the values of properties and need them quoted in a
different form. For example if you need to change the quotes from double
to single.

fwQuote("bat") will yield "bat"

fwQuote("bat","'") will yield 'bat'

fwQuote("'bat'",'"',"'") will yield "bat"

Files and Freeway Actions

It is possible for Freeway Actions to read and write files and to cause those
files to be uploaded when the site is published. So for example you could
make a suite of Freeway Actions that generate JavaScript files, text files or
even HTML files that are uploaded automatically. Access to the files is
largely through the FWFile class.

However there are a small number of global methods that augment the
FWFile class. These methods all apply to the "working folder" of the
Freeway document. The working folder is next to your Freeway Document
and will contain files that are generated by Actions

Methods

fwDeleteFile(name)
This attempts to delete a file with the specified name from the working
folder. If the file of that name was not deleted it returns false otherwise it
returns true. Boolean.

7

fwFindAllFiles([type[, creator]])
This returns an array with the names of all the files in the working folder. If
a [Macintosh] file type is passed then Freeway will return just those files of
that type. If a Macintosh creator type is also passed then Freeway will
return just the files of that creator and type. The type and creator are
expected to be strings of 4 characters. If there are no files that match that
type or indeed there is no working folder then an array with no elements will
be returned.

Arguments:

type4 charstring creatorString

fwFindFile(name)
This is returned if a file of a given name exists.

Argument:

name: string name of file to look for.

Classes

Introduction

Two types of classes an interface with a data property an instance of an
object.

Example:

fileread
The classes are listed in the following pages in alphabetical order for easy
reference and their relationship is shown in the layout, organisation of
classes and subclasses.

8

Organisation of Classes

Class FWAction
Class FWActionList
Class FWColor
Class FWColorList
Class FWDocument
Class FWElement
Class FWLayoutElement
Class FWItem
Class FWPage
Class FWFile
Class FWFolder
Class FWItemList
Class FWLink
Class FWListData
Class FWOSAInterpreter
Class FWOutput
Class FWAttribute
Class FWTag
Class FWParameter
Class FWLinkParameter
Class FWColorParameter
Class FWFileParameterFWImageParameter (* hidden)

Class FWParameterList

Class FWAction
This class defines an instance of an action on a page. Every instance
(occurrence) of an action on a page has a corresponding FWAction. All the
user defined methods are called within the context of a FWAction. i.e.
'this' is the current FWAction.

Properties (19)

fwActions
The list of Actions in which this Action appears, that is the list of Actions
applied to the item or page where FWActionList this Action is applied.

fwAltText
The alt text that is applied to the Action's item. Note you should call
fwEncode before generating HTML String with it.

9

FwClearGif
Gives the relative path to the clear-gif from the current page (for example,
“Resources/_clear.gif”). String

fwDocument
The Action document (the Freeway document in which the Action is used).
FWDocument

fwFileName
Returns the relative path of the file to which the Action is being applied.
The file will contain all or part of the String image (if the image is sliced).
This is only available after or during fwAtContent. This can vary across
different calls to fwAtContent if an object is sliced.

fwFolder
Immediate folder containing the page on which the Action
appears.FWFolder

fwGeneratesForm
Determines whether this Action generates a form (and therefore does not
need Freeway to generate a form). Boolean

fwGeneratesLink
Determines whether this Action generates a link (and therefore Freeway
does not need to generate a link).Boolean

fwHeight
The height of the item, or part (if the image is sliced), on to which the Action
is applied. This can vary across Integer different calls to fwAtContent if an
object is sliced.

fwIndexOf
The zero-based index of this Action in the action list fwActions.Integer

fwItem
Item to which the Action is applied. FWElement

fwLayerName
The name of the layer on which the Action is applied. If there is no layer,
an empty string is returned. String

10

fwMapName
The name of the image map associated with this item. This can vary across
different calls to fwAtContent if an object is sliced. String

fwMarkups
The list of <action-markup> tags defined for this Action.

Examples :

<action-markup>
<action-html before-end-head>
<action-markup custom name=fred>

These can be named and then easily referenced by name. They are
particularly useful to store pieces of raw text to be output by the Action.
<action-html> is a synonym for <action-markup>.

fwPage
Page on which the Action appears. FWPage

fwParameters
The list of parameters which this Action has. FWParameterList

fwRequiresForm
Determines whether this Action requires a form in order to be generated
(for example, if it outputs a text field or Boolean button which needs to be
contained in a form).

fwTitle
Name of the Action. String

fwWidth
The width of the item or part (if the image is sliced), on to which the Action
is applied. This can vary across Integer different calls to fwAtContent if an
object is sliced.

Methods (1)

fwSubstitute(string)
This method will substitute variables of the form ¶m; with their values
from the Action parameter list (in the same way that it occurs in the Simple
Actions language). Returns a string with the parameters substituted.

11

Example 1:

This example has a string into which the parameters param1 and param2
are substituted.

<page-action name="Substitute Test 1">
<action-text name="param1" default=a>
<action-text name="param2" default=b>
<action-javascript>

function fwAfterEndHTML()
{

var s="param1= ¶m1; param2= ¶m2;";
alert(s);
alert(fwSubstitute(s));

}

</action-javascript>
</page-action>

Example 2:

You can also use <action-markup custom> to dump in sections of text
without having to quote it. This is very useful if you want to put pieces of
JavaScript in the output. You can access it through JavaScript from the
fwMarkups property of the action.

12

<page-action name="Substitute Test 2">
<action-text name="param1" default=c>
<action-text name="param2" default=d>
<action-markup custom name="mytext">
param1= ¶m1; param2= ¶m2;
</action-raw>
<action-javascript>

function fwAfterEndHTML()
{

var s=fwMarkups.mytext;
alert(s);
alert(fwSubstitute(s));

}
</action-javascript>
</page-action>

User Methods (4 methods)

These methods if present in your Freeway Action will be called in the
places that their name suggests. This gives your Action an opportunity to
add to the HTML that is generated by Freeway at a specific point in the
output.

Example:

The following code would insert the word "wibble" just before the end of
the header (ie before </Head>) of the published HTML file.

fwBeforeEndHead()
fwDocument.fwWrite (“wibble’); is equivalent to

<action-markup before-end-head> wibble </action-markup >

Positions for insertion point which mirror specific points in the output:

fwAfterEndBody()
fwAfterEndForm()
fwAfterEndHead()
fwAfterEndHTML()
fwAfterEndNoFrames()
fwAfterEndTable()
fwAfterStartBody()
fwAfterStartForm()
fwAfterStartHead()
fwAfterStartHTML()

fwBeforeEndBody()
fwBeforeEndForm()
fwBeforeEndHead()
fwBeforeEndHTML()
fwBeforeEndNoFrames()
fwBeforeEndTable()
fwBeforeStartBody()
fwBeforeStartForm()
fwBeforeStartHead()
fwBeforeStartHTML()

13

fwAfterStartNoFrames()
fwAfterStartTable()

fwBeforeStartNoFrames()
fwBeforeStartTable()

fwAtContent()
This method, if present in your Freeway Action, is called when the content
of an image would be written. If this method is present then Freeway will
not write the tag. Instead it will rely on your Freeway Action to
generate the entire content for the item (for example, the tag for an
image) in your fwAtContent method.

fwIsDirty()
This method, if present in your Freeway Action, is called before your page
is published. It gives your Action a chance to force Freeway to republish a
page when Freeway does not think that the page is needs to be
republished. The fwIsDirty method will only be called if Freeway believes
your page does not need to be republished. This is because if your page is
dirty then Freeway has no need to call your fwIsDirty method, as it will
republish your page anyway. Returns: Returns true if the page is "dirty"
and should be republished.

Example 1:

This example will always force the current page to be republished.

function fwIsDirty()
{

return true;
}

Example 2:

This example method looks at the "Last Page" parameter and compares it
against the next page in the containing folder. If it is different then it marks
the page as dirty.

14

function fwIsDirty()
{

// if the last page generated is not the same as 'current' page
// then we are dirty

var nextPage = fwFolder.fwNextPage(fwPage);
var currPage = fwParameters["Last Page"].fwValue.fwInternal;

return nextPage != currPage;
}

fwInterface

This method, if present, is called when the Actions palette is being set up.
It allows you to perform any functions required and set necessary values to
display in the interface

Class FWActionList

This defines the list of actions that are applied to an item or page. This list
is zero-based i.e. the first item is

fwActions[0].

Property (1)

fwLength
Number of items in the list. An Action item has an empty actions list.
Integer

Class FWAttribute

This class is a subclass of Class

FWOutput.

It represents an attribute of a Case

FWTag.
Consider the following snippit of HTML.:

In the tag tree this would be represented as one FWTag. The attributes of the
tag:

15

src="Resources/_clear.gif"
border=0
width=50
height=1
alt=""

are each represented as an FWAttribute.

When you add an attribute to a tag (in JavaScript you do this by just
adding a property), such as:

myTag.onclick='"alert(1);”';

a new FWAttribute will be created.

Property (1)

fwValue
This is the text value of the attribute.

Class FWColor

This class represents the colors that appear in Freeway in the Color
palette.

Properties (8)

fwHasValue
Is the color a true color which has a value. For example "knockout" is not a
proper color and has no Boolean value.

fwHex
The hex value of the color. String

fwIsForcedNetSafe
Is the color not "naturally" a net-safe color but the user has forced it to be
Netsafe. Boolean

fwIsNetSafe
Is the color a net-safe color. Boolean

fwIsPermanent
Is the color a permanent color. Boolean

16

fwIsTemporary
Is the color a temporary color. Boolean

fwTitle
Name of the color. String

fwValue
This returns a JavaScript object with values for red, green and blue.

Class FWColorList

This defines the list of colors that are in a document. The items are
FWColor

Property (1)

fwLength
Number of items in the list. String

Class FWColorParameter

This class represents the Color Parameter. It is a subclass of
FWParameter.

The fwValue property will return a value of type Color.

Class FWDocument

This class represents a Freeway document. From this class you can
access many document-wide properties like colors, pages, master pages
etc.

Properties (7)

fwColors
List of colors that are defined for this document.
FWColorList

fwCurrentPage
This returns the current page of the front-most window that contains this
document.

17

FWPage
Example: This posts an alert with the current page in it.

<item-action name="Get Current Page">
<action-button name="Current Page"

onclick"alert(fwDocument.fwCurrentPage)">
</item-action>

fwMasterPages
List of master pages that appear in this document. FWItemList

fwPages
List of pages that appear in this document. FWItemList

fwTags
This is the tags that have been created during the generation of the HTML
of the current page. If you FWTagaccess this property outside of the
generation of the page then it will be null. If you access this propertybefore
fwAfterEndHTML then it will be incomplete.

fwTargets
An array of targets that have been defined for this document. Array of
strings

fwTitle
Name of the document. String

Methods (4)

fwSelection()
This returns the current selection in an array. This is the selection of the
front-most window of thisArray of FWLayoutElemen tdocument. If there is
no selection or if there is a text selection or a frameset is highlighted it will
return an array with no elements.

Example:

The following example lists all the selected elements in an alert.

18

<item-action name="Get Selection">
<action-button name="Get Properties" onclick="GetSelection()">
<action-javascript>

function GetSelection()
{

var selection = fwDocument.fwSelection();
var temp = "";

for (var i in selection)
temp += selection[i] + "\r";

alert(temp);
}

</action-javascript>
</item-action>

fwWrite(string[,string...])
This will write the Arguments:

 as a concatenated string into the output at the currentOne or more
stringsposition in the HTML file. So if you call this from your
fwAfterEndHead method, the Arguments:

 will be spooled into the HTML file at this point.

fwWriteln([string[,string...]])
This will write the Arguments:

 as a concatenated string into the output at the Zero or more stringscurrent
position in the HTML file. Followed by a <cr> of the format that is specified
in the Freeway Preferences.

fwWritelnopt([string[,string...]])
As fwWriteln with the exception that a <cr> is only written if theZero or
more strings HTML output has been set to be more readable in the
preferences.

Class FWElement

This is the base class of Freeway items. It includes all items that can
appear on a page, the page itself, folders and Master pages. It is also used
to represent the internal structures that manage and organize styling
information within Freeway. There are no objects derived from this only

19

subclasses. The primary subclass is Class FWLayoutElement with two
further subclasses in it. These are Class FWItem and Class FWPage. (You
will find these described in alphabetical sequence but the structure is
defined in the Classes map.)

[There is a subclass of this class: Class FWLayoutElement with two further
subclasses Class FWItem and Class FWPage.]

Properties (17)

fwHasTitle
Can the item have a title (name) For example table cells cannot have a
name. Boolean

fwIsFolder
Is the element a folder. Boolean

fwIsFrameSet
Is the item a FrameSet page. Boolean

fwIsInlined
Is the element an in-lined item, that is the item inserted in the text inside
another item. Boolean

fwIsItem
Is the element an item that appears on a page. Boolean

fwIsMapArea
Is the element a map area. Boolean

fwIsOval
Is the element an oval item. Boolean

fwIsPage
Is the element a page. Boolean

fwIsPath
Is the element a path. Boolean

fwIsRectangle
Is the element a rectangular item. Boolean

20

fwIsRRectangle
Is the element a round cornered rectangle. Boolean

fwIsTable
Is the element a table. Boolean

fwIsTableCell
Is the element a table cell. Boolean

fwItems
List of elements that are contained within the element. e.g. for a page this
would be the list of items that FWItemList appear on a page.

fwMaster
The master element on which this element is based. If the element is
derived from a master page then this FWElement will be the element on the
master page. If the element has no master then this will be nil.

fwParent
The element that encloses or owns this item. For an item sketched on the
page this would be a page. For FWElement a page this would be the folder
in which it is stored.

fwTitle
Name of the element.String

Method (1)

fwHttpPath([page])
This returns the relative path to the page on which an item appears. If you
pass a page reference into the Booleanmethod then it will return the path
relative to that page. Argument: Page - the page for which a relative path
is returned.

Class FWFile

Using JavaScript it is possible to read from and write to external files. There
are some restrictions on the files that an Action can create - this is to
prevent the possibility of malicious actions overwriting other actions,
destroying data etc. If you reference a file by name it will reference a file in
the document's working folder. The working folder is a folder next to your

21

Freeway Document and will contain files that are generated by Actions.

This class represents a file. You can create FWFile objects within
JavaScript and use them to open, read and write files. The general format
of the methods is that they return true if the operation succeeds or false if it
fails. When you need to discover if an error prevented the operation from
succeeding you can interrogate the fwError property of the object.

Example: This code fragment prompts the user to locate a file, then opens
the file and posts the contents of it into an alert.

myFile = new FWFile;

// choose a file of type text with the prompt 'Locate File'
// and open it

if (myFile.fwLocateRead('Locate File','TEXT'))
{

alert(myFile.fwReadString(myFile.fwAvailable));
}

When you write files in Freeway you can either get the user to choose the
location where the file is to be written or you can specify the file
programatically within Freeway. When you specify a file programatically
you pass a filename and Freeway will create the file in a folder that is next
to your Freeway document. If your Freeway document is called "home site"
then Freeway will create a working folder called "home site." and place the
document in there.

Properties (3)

fwAvailable
Is the number of bytes left to be read. Integer

Example:
The following example shows how you can use a filename in a parameter
to specify the file to be read. This sample action includes mark-up from
external files, opens them and dumps the content using the
fwDocument.fwWrite() method.

22

<page-action name="External Markup">
<action-file name="before-start-html">
<action-file name="after-start-html">
<action-file name="before-start-head">
<action-file name="after-start-head">
<action-file name="before-end-head">
<action-file name="after-end-head">
<action-file name="before-start-body">
<action-file name="after-start-body">
<action-file name="before-end-body">
<action-file name="after-end-body">
<action-file name="before-end-html">
<action-file name="after-end-html">
<value type="TEXT">
</action-file>
<action-javascript>

function writeFile(fileParam)
{

if (fileParam.fwHasFile)
{

var file = new FWFile();
file.fwOpenRead(fileParam);
var s = file.fwReadString(file.fwAvailable);
fwDocument.fwWrite(s);

}
}

function fwBeforeStartHTML()
{

writeFile(fwParameters["before-start-html"])
}

function fwAfterStartHTML()
{

writeFile(fwParameters["after-start-html"])
}

function fwBeforeStartHead()
{

writeFile(fwParameters["before-start-head"])
}

23

function fwAfterStartHead()
{

writeFile(fwParameters["after-start-head"])
}

function fwBeforeEndHead()
{

writeFile(fwParameters["before-end-head"])
}

function fwBeforeEndHead()
{

writeFile(fwParameters["before-end-head"])
}

function fwBeforeStartBody()
{

writeFile(fwParameters["before-start-body"])
}

function fwBeforeEndBody()
{

writeFile(fwParameters["before-end-body"])
}

function fwBeforeEndBody()
{

writeFile(fwParameters["before-end-body"])
}

function fwBeforeEndHTML()
{

writeFile(fwParameters["before-end-html"])
}

function fwAfterEndHTML()
{

writeFile(fwParameters["after-end-html"])
}

</action-javascript>
</page-action>

fwCanRead

24

Is the file open for reading. Boolean

fwCanWrite
Is the file open for writing. Boolean

Methods (10)

fwClose()
This closes an open file. You should close a file when you have finished
writing to it so the write buffers will be flushed and the file can be opened by
another application or can be uploaded. You close files opened for reading
when you have finished with them.

fwDelete()
This deletes the current file. It will only delete the file if it is one that has
been specified by the user using fwLocateWrite or if it is in the working
folder.

fwLocateRead([prompt string][,FileType1, ... FileType2])
This will allow the user to String choose a file. You can then open this file
and read it. FileType1, 2 etc- list of file types. Each file type is a 4
character string. If you pass less than 4 characters it will be padded with
spaces. If you pass more than it will be truncated at 4. If an array is passed
then it will be interpreted as a list of 4 character strings.

Arguments:

prompt string - string that will appear in the open dialog box to prompt the
user.

Example:1

Choose a file of type 'TEXT'.

var wasChosen = myFile.fwLocateRead('Locate a text File','TEXT');

Example 2:

Choose a file of type "GIFf" or "JPEG".

var wasChosen = myFile.fwLocateRead('Locate a graphic
File','GIFf','JPEG');

Example 3:

25

Choose a file of type "GIFf" or "JPEG".

var fileTypes = Array('GIFf','JPEG');

var wasChosen = myFile.fwLocateRead('Locate a graphic
File',fileTypes);

Example 4:

Choose any file.

var wasChosen = myFile.fwLocateRead('Locate a File');

fwLocateWrite([prompt string[,defaultfilename[,
type[,creator]]])
This is used to see if Boolean Freeway created the file successfully.
Returns true if Freeway created the file. i.e. if the user did not cancel and if
the file was created successfully.

Arguments:

prompt string the string that will appear in the dialog as a prompt

defaultfilename
the name that will appear in the dialog box as the default name of the file

type
the type of the file to be created e.g. 'Text' If omitted it will be given the file
type of "????". Each type is a string 4 characters long.

creator
The creator of the file, a character string of 4 characters. If not present it will
be given the creator type of Freeway.

Example:

This allows the user to create a file, selecting the name that they want and
putting the text "test" into it.

26

<item-action name="Test">
<action-button name="locate" onclick = "DoLocate()"/>
<action-javascript>

function DoLocate()
{

// create a new file object
myFile = new FWFile;

// get the user to create the file
var wasChosen = myFile.fwLocateWrite('Locate a NEW File',"My

File",'TEXT');
if (wasChosen)
{

myFile.fwWrite('test');
myFile.fwClose();

}
}

</action-javascript>
</item-action>

fwOpenRead(fileobject/fileparameter/tempfilename)
This will open a file that is specified for reading. If the file cannot be opened
it returns false. The file to be read is either the name of a file in the working
folder, a fileparameter or a FWFile object
(fileobject/fileparameter/tempfilename). Boolean

fwOpenWrite(filename[,deleteexisting][type[,creator]]])
This will create a file of the given name or open an existing file of this name
for writing.

Arguments:

filename: name of the file to be created

deleteexisting: (boolean) delete the existing file (if any).

type4 chars the file type

creator4 chars the creator string

Example:

This creates a file "Test File", writes "test" into it and then closes it.

27

<item-action name="Test">
<action-button name="Make File" onclick = "doit()"/>
<action-javascript>

function doit()
{

myFile = new FWFile;

myFile.fwOpenWrite('Test File',false,'TEXT');
myFile.fwWrite('test');
myFile.fwClose();

}

</action-javascript>
</item-action>

fwReadln()
This will read from the current read position to the end of the line, unless
the end of the file is reached in String which case it will read to the end of
the file. All the characters with the exception of the line end character /r or
/n will be returned. If a line is empty (i.e. only contains a line-end
character) then an empty string will be returned.

Example: This locates a text file and will post the contents one line at a
time in an alert.

28

<item-action name="Test fwReadln">
<action-button name="read file" onclick = "DoLocate()"/>
<action-javascript>

function DoLocate()
{

// create a new file object

myFile = new FWFile;

// choose a file of type text with the prompt 'Locate File'
// and open it

if (myFile.fwLocateRead('Locate File','TEXT'))
{

do
{
var s = myFile.fwReadln();
if (s)
alert(s);

else
break;

} while (true);
myFile.fwClose();

}
}

</action-javascript>
</item-action>

fwReadString([numberofbytes])
This reads the number of bytes specified and returns them as a string. If
you omit theString number of bytes then it will attempt to read the whole
file.

fwWrite(string[,string...])
This will write the Arguments as a concatenated string into the file. One or
more Strings

fwWriteln(string[,string...])
This will write the arguments as a concatenated string into the file, followed
by a One or more strings carriage return.

29

Class FWFileParameter

This class provides an interface to the file parameter. It is a subclass of
FWParameter. The File parameter provides a way that the user can specify a
reference to a file. If a file parameter is referenced from within Freeway in
such a way that it's file name is resolved (i.e. if you ask for the location of a
file within the web site) then the file will be uploaded when the site is
published.

The location of a file is resolved as a "normal" part of writing an action. In a
non-JavaScript action you would reference the location of the file (relative
to the page) by referencing the parameter name so that it is output during
publishing. In a JavaScript action this will happen if you call the methods
fwFullFileName(), fwFileName(), toString() - or cause the toString()
method to be called implicitly.

Properties (3)

fwFileName
The short name of the file (without the path) as published. String

fwFullFileName
The name of the file (with path) as published. String

fwHasFile
Does the parameter have a file set. Boolean

Method (1)

fwSpecify(file)
This allows you to specify the file that will be used where file is a FWFile.

Class FWFolder

This class represents the folders that you can create for pages within
Freeway that appear in the Site palette.

Properties (3)

fwFileName
This is the file name of the folder. String

30

fwFirstPage
This is the first page in the folder. It is null if the folder has no pages in it.
FWPage

fwLastPage
This is the last page in the folder. It is null if the folder has no pages in it.
FWPage

Methods (2)

fwNextPage(page)
Returns the next page in the folder that is after the 'page' passed in as an
argument.FWPage

Example: The page after the current page is returned but if the current
page is the final page then this method returns null.

var nextPage = fwFolder.fwNextPage(fwPage);

fwPreviousPage(page)
Returns the page in the folder that is before the page passed in as an
argument.FWPage

Example: This will return the page before the current page. If there is no
page before the page passed in then this method returns null.

var prevPage = fwFolder.fwPreviousPage(fwPage);

Class FWImageParameter

This is a subclass of FWFileParameter. Parameters of this type are
generated by <action-image> in the Freeway Action. These have the same
properties and methods as FWFileParameter.

Class FWItem

This class represents items that appear on the Freeway page. It is a
subclass of FWLayoutElement.

Properties (17)

fwAltText
This returns the alt text for the item. If "Auto" is set then it will return the

31

automatic alt text (the alt text String that is calculated by Freeway) if this
item is the bottom-most item in an image group. If there is alt text
specifically set for this item then it will return that alt text. If there is no alt
text set then it will return an empty string.

Example:

This posts an alert using the alt text of the item onto which the Action is
applied.

<item-action name="Alt Text">
<action-javascript>

function fwAfterEndBody()
{

alert("Alt Text = '",fwItem.fwAltText,"'");
}

</action-javascript>
</item-action>

fwBottom
This is the bottom (y) co-ordinate of the item.Integer

fwExportType
This is the export-type of the item. It has the following values.

Integer

0. Other File Plugins, applets, pass-through graphics

1. HTML Item

2. Export as GIF file(s)

3. Export as JPEG file(s)

4. Export as URL item

5. Export as PNG file(s)

6. Map Areathe item is an image map

fwHasAutoAltText
Returns true if “Auto Alt Text” has been selected for this item. Boolean

fwHeight
This is the height of the item. Integer

32

fwIsInLayer
Is the item in a layer – for inline items or table cells this will be true as their
parent is in a layer. Boolean

fwIsLayer
Is the item a layer - for inline items or table cells this will be false as they
are in a layer but are not layers Boolean themselves.

fwIsOnPasteboard
Is this item entirely on the pasteboard. Boolean

fwIsOverflowed
Does this item have overflowed content.Boolean

Example:

An alert is posted when the button is pressed, if the item to which the action
is applied has overflowed content.

<item-action name="Is Overflowed">
<action-button name="Is Overflowed"
onclick="alert(fwItem.fwIsOverflowed)">

</item-action>

fwIsPublished
Is the publish attribute of the item set? This will only be false if the user
sets the publish checkbox of the item so that it will not be published.
Boolean

fwLeft
This is the left (x) co-ordinate of the item. Integer

fwLink
This is the link object that is applied to an item. If there is no link then this
will return null otherwise it will return an FWLinkObject.

fwMainItem
This returns the main item in a combined image. This item is the item to
which the active Action is FWItem applied. In the case of a combined image
it returns the bottom-most item in that combined image.

Example: This posts an alert with the name of the main item.

33

<item-action name="Get Main Item">
<action-button name="Main Item" onclick"alert(fwItem.fwMainItem)">
</item-action>

fwRight
This is the right (x) co-ordinate of the item. Integer

fwSubmit
This is the name that has been entered as the submit name if the item is an
image submit button. If it is String not then this property will be null.

fwTop
This is the top (y) co-ordinate of the item. Integer

fwWidth
This is the width of the item. Integer

Methods (9)

fwCountLines([includeoverflow])
This returns number of lines in the item, the overflow is included if you pass
a IntegerBoolean value of true to the overflow.

Example: This returns the number of lines in the item. A checkbox allows
you to consider the lines in the overflow.

<item-action name="Count Lines">
<action-checkbox name=overflow>

<action-button name="Count"
 onclick="alert(fwItem.fwCountLines(fwParameters.overflow ==
'yes'))">

</item-action>

fwFindLines([firstline][lastline][includeoverflow])
This returns an array of strings that An array of zero or satisfy the criteria.
The firstline & lastline are optional and work in the same way as more
text strings to the string slice operator. So index elements are positive
numbers from the start of the content, negative numbers indicate offsets
from the end of the offset so that fwFindLines(1,-1) will return an array of
all the text except for the first and last lines. The default behaviour is to

34

exclude the overflow. If you wish to include the overflow pass in a Boolean
value of true.

Arguments:

firstline: first line to get the text from lastlinelast line to get the text
from includeoverflowinclude overflowed text

Example:

This Action will list the lines of text as specified by the start & end
parameters.

<item-action name="Find All Lines">
<action-number name=start default=0>
<action-number name=end default=0>
<action-checkbox name=overflow>
<action-button name="Find All Lines" onclick="FindAllText()">
<action-javascript>

function FindAllText()
{

var overflow = fwParameters.overflow == "yes";
var start = parseInt(fwParameters.start);
var end = parseInt(fwParameters.end);
var text = fwItem.fwFindAllLines(start, end, overflow);
var temp = "";

for (var i in text)
temp += text[i];

alert(temp);
}

</action-javascript>
</item-action>

fwFlash
This returns an object with the properties that have been set for Flash
export. The object has the properties: fwPlay and fwLoop.

fwImageGroup
This returns an array of all the items that are in the same image group as
this item. Remember – graphic An array of zero or items that overlap each
other and do not have their combine flag turned off will be grouped with
othermore text strings items to form a single image. This function will return
all these items in an array. r more items

35

Example:

This posts an alert with the names of all the items in the current image
group.

<item-action name="Get Group">
<action-button name="Get Group" onclick="GetGroup()">
<action-javascript>

function GetGroup()
{

var imageGroup = fwItem.fwImageGroup();
var temp = "";

for (var i in imageGroup)
temp += imageGroup[i] + "\r";

alert(temp);
}

</action-javascript>
</item-action>

fwPath()
This returns the set of points that describe the item as a closed path. The
points are appear in the array as x,y co-ordinates. So a rectangle with a
top-left of 5,10 and a height of 20 and a width of 30 will appear as the
points: 5,10,35,10,35,30,5,30

Example:
This example gets the path of the item that the action is applied to and puts
it in an alert. The alert method will automatically convert the path to a
comma separated string.

36

<item-action name=showpath>
<action-javascript>
function fwAfterEndBody()
{

alert(fwItem.fwPath());
}
</action-javascript>
</item-action>

fwQuickTime
This returns an object with the properties that have been set for QuickTime
export. The object has the following properties: fwAutoPlay, fwLoop,
fwController

fwSelect
This returns an object with the properties fwSize and fwWidth that defines
the size and width those dimensions would have as a selection area
(popup or list form item).

fwTextarea
This returns the dimensions of an object’s text area [of what type with what
parameters]with the properties fwRows and fwCols that define the rows and
an item

fwTextfield
This returns an object with the property fwSize that defines the size of the
item with those dimensions as a text field.

Class FWItemList

This defines a list of FWElements. It appears as the fwItems property of the
FWElement. It is a zero indexed list that you can also "associatively" access.
For a page it will be the list of items on the page. For a folder, it will be the
list of pages. For an item it will be the list of inline items within it.

Example: 1:
Set myItem to the item named "anitem"

var myItem = fwPage.fwItems["anitem"];

or

var myItem = fwPage.fwItems.anitem;

37

Example: 2:
Set myItem to the first item on the page

var myItem = fwPage.fwItems[0];

Example: 3:
Set myItem to the last item on the page

var myItem = fwPage.fwItems[fwPage.fwItems.fwLength - 1];

Property (1)

fwLength
Number of items in the list. Integer

Class FWLayoutElement

This class is the super class of all items, pages and folders. There are no
actual instances of this class.

Properties (4)

fwActions
The list of actions applied to this item. FWActionList.

fwContentFile
This returns a string that is the full filename of the source content (if the
element has content). Your String would use this to find the file that is
responsible for the content e.g. the image file if the item has an image
imported from an external file. If the item has no content it returns the
empty string. For a page it will contain the background image.

fwFolder
The folder that this item appears in within the Site palette. FWFolder

fwPage
The page (if any) that the element is or appears on. FWPage

Class FWLink

This class represents a link in Freeway. It can represent internal links
(linked to other parts of Freeway) and external links.

38

 Properties (7)

fwExtended
These are the extended attributes that have been set on the
link.FWListData

fwExternal
This is the external link that has been set. e.g.
‘http://www.softpress.com’. If there is no link or the String link is an
internal link then this will return null.

fwHasLink
If a link has been set this is true. Boolean

fwInternal
This is the item such as an anchor or page that is linked to. If it is not an
internal link then this property FWElement is null.

fwIsExternal
If there is an external link this is true. Boolean

fwIsInternal
Is true if there is an internal link. Boolean

fwTarget
This is the target that has been set on the link. String

Methods (2)

fwClear()
Set the link object so that it is not linked to anything i.e it is cleared.

fwUrl([page])
This returns the URL as a string relative to a particular page – if the page is
passed in.

Class FWLinkParameter

This class represents the Link Parameter. It is a subclass of FWParameter.

The fwValue property will return a value of type FWLink.

39

Class FWListData

This class is used to represent lists of items such as extended attributes.
List of strings

Property

fwLength
Number of items in the list. The list will have name/value pairs e.g. meta
tags. Integer

meta = fwPage.fwMetaTags
alert(meta[“GENERATOR”]);

shows “freeway 3.0”

Class FWOSAInterpreter

This class can be constructed within JavaScript. It provides an interface by
which OSA scripts can be compiled, run and executed. This is most useful
for allowing AppleScript to be executed from within Freeway Actions.

Note when executing the FWOSAInterpreter methods, the time-out is
suspended.

The object works by having a script set in it. You build the script by a series
calls to fwWrite and fwWriteln. Then you ask the object to compile the
script, after which a call to fwRun will execute it.

Example 1:

The following script will allow the user to locate a file and that file will then
be executed as an AppleScript.

40

// locate the file with the AppleScript in it
var theFile = new FWFile;
if (theFile.fwLocateOld('Locate AppleScript File','TEXT')

&& theFile.fwOpen('read'))
{

// create the object to interpret the script
var osa = new FWOSAInterpreter;

// read the text
var text = theFile.fwRead(theFile.fwAvailable);

// set the text in the OSA interpreter
osa.fwWrite(text);

// compile it
osa.fwCompile();

// run it
var result = osa.fwRun();

// if there are some results put them in an alert
if (result && result != '')

alert(result)
}

Example 2:
This example shows an action with a small amount of AppleScript written
as markup. This markup is then executed in the OSA Interpreter. It
provides the easiest method of adding AppleScript, which is generally a
large amount of text, to an Action.

41

<action-markup custom name="osa">
tell application "FileMaker" display dialog (¶m;)
end tell
</action-markup>

<action-javascript>
function fwATContent()
{

var osa=new FOSAInterpreter;
var text= fwMarkups["osa"];
fwSubstitute(text);
osa.fwWrite(text);
osa.fwCompile();
alert(osa.fwRun());

}
</action-javascript>

Properties (2)

fwIsCompile()
Has the script been compiled? Boolean

fwScriptType
This is the type of script denoted by a 4 char code, by default it is
AppleScript. String (4 char)

Methods (5)

fwClear()
Clear the current script.

fwCompile
Compile whatever script is in the object. After compiling, the next time you
call fwWrite it will first clear the current script.

fwRun()
Run the current script. If the script has not been compiled then it will be
compiled at this point.

fwWrite(string[,string...])
This will add the arguments as a concatenated string into the script object.
One or more strings

42

fwWriteln([string[,string...]])
This will add the arguments as a concatenated string into the script object,
Zero or more strings followed by a carriage return.

Class FWOutput

This is the super class of FWTag and FWAttribute used for creating output
from Freeway. Raw output is stored as an FWAttribute.

Properties (4)

fwEnclosing
The tag or raw data that encloses this attribute. FWAttribute

fwFirst
The first item that this tag contains. String

fwLast
The last item that this tag contains. String

fwRoot
The root or the tag that ultimately encloses everything, the same as
fwDocument.fwTags

Methods (17)

fwAdd(name/htmltag[,after][,hasClose])
This method will add a new tag if you pass in a string with the name of the
new tag that you want to add.

Arguments:
:
name/htmltag: the name of a new tag or an existing tag after the tag after
which it should be added has Close sets this to true if you want the tag to
be closed

Example: 1:
This example will add a <p></p> after the first image tag and give it
contents of the image "srce".

43

<page-action name="Label First Image">
<action-javascript>

function fwAfterEndBody()
{

// Find the first img tag
var firstImg = fwDocument.fwTags.fwFind("img");
var enclosing = firstImg.fwEnclosing;

// add a <p> tag after the tag
var para = enclosing.fwAdd("p", firstImg, true);

// and give the paragraph tag raw data of the image path
para.fwAddRaw(firstImg.src.toString());

}

</action-javascript>
</page-action>

fwAddEnclosing(tagType/content[,hasClose])->FWTag
This method adds an enclosing tag around an existing tag content either a
tag or raw code. FWTag

Arguments:

tagType/content Either the name of a new tag to be created or an existing
tag. FWTag or raw code has Close This specifies if the tag should have
it's close attribute set. Boolean

Example:

This code finds the first tag on the page and adds an enclosing link
tag to it. It passes true as it wants the tag to be closed i.e. a to be
written as well.

44

<page-action name="Add Dummy Link">
<action-javascript>

function fwAfterEndBody()
{

// Find the first tag
var firstImg = fwDocument.fwTags.fwFind("img");

// add a link to it
var linkTag = firstImg.fwAddEnclosing("a", true);

// set the href
linkTag.href='"#"';

}

</action-javascript>
</page-action>

In this example the first will be enclosed in a <a> tag so that it will
change from to

fwAddJavaScript([,after tag][string])
This is used to add JavaScript to the HTML output. You optionally FWTag
specify the script name and version and Freeway will return a <script> tag.
Freeway will look for a tag of the sort you request. If it finds one it will
return that. If it does not it will create one. This method is very useful for
adding JavaScript to a block of code. In addition to creating the tag
Freeway will correctly enclose it in the correct hiding mechanism to prevent
early browsers that do not understand JavaScript from having problems. It
returns a <script> tag.

Arguments:

after tag: the tag to add this after. FWTag
string: the name of the script tag to add. String

Example:

The function below will add a piece of JavaScript stored in "action-markup"
if not there:

45

// This appends a piece of JavaScript stored in /action-markup/ to
a specific tag

// This appends a piece of JavaScript stored in /action-markup/
to a specific tag

function AppendJavaScript(tag, markup)
{

// Append a piece of markup if it is not already defined
if (!fwPage[markup])
{

var headTag = fwDocument.fwTags.fwFind(tag);
if (headTag)
{
var javascript = headTag.fwAddJavaScript();
javascript.fwAddRawOpt(fwMarkups[markup]);
fwPage[markup] = true;

}
}

}

fwAddRaw([text1][,after][,text2])
This returns the FWAttribute that has been created to hold the raw data.

Arguments:

text1 If there is no text2 then this is the raw value. If there is a text2 then
this denotes the name of the raw text added.
after: This is the content object that it should be placed after. If there is no
content object then it will be appended.
text2: This is the value of the object.

Example: 1:
This will append the text "Test" as raw data after the last tag within the
body.

function fwAfterEndBody()
{

var body = fwDocument.fwTags.fwFind("body");
body.fwAddRaw("Test");

}

Example: 2:
This action will append the text "Test" as raw data after the head tag within
the HTML.

46

function fwAfterEndBody()
{

var html = fwDocument.fwTags.fwFind("html");
var head = fwDocument.fwTags.fwFind("head");
html.fwAddRaw("Test", head);

}

fwAddRawln[text1][,after][,text2])
As fwAddRaw but adds a carriage return.

fwAddRawOpt([text1][,after][,text2])
As fwAddRaw but adds a carriage return at the end if more readable code is
set in the preferences.

fwDelete
This will delete a tag so that it will not be included in the output.

Example:
This will delete the first image on the page.

<page-action name="Delete First Image">
<action-javascript>

function fwAfterEndBody()
{

// Find the first img tag
var firstImg = fwDocument.fwTags.fwFind("img");

// Delete it
firstImg.fwDelete();

}

</action-javascript>
</page-action>

Note: Deleting this image will simply remove it from the page. The table structure, or
layer that this image would have appeared in will be preserved.

fwFind([owner][after tag][type [,name [,value]]])
This method allows you to find the first occurrence of a tag that satisfies a
particular criteria. It returns the tag found or null.

Arguments:

47

• ownerfind: a tag that was owned (created) by this element
FWElement

• aftertag: find a tag after this one. FWTag

• name find a tag with an attribute of this namevalue find a tag that has
an attribute of this valuetypename of tag (eg.”img”)

Example 1:
This finds the first tag in the document

function fwAfterEndBody()
{

// find first tag
var firsttag = fwDocument.fwTags.fwFind("img");

alert(firsttag);
}

Example 2:

This action finds the first tag that belongs to the item onto which the
Action is applied.

<item-action name="Find First Img">
<action-javascript>

function fwAfterEndBody()
{

// find first tag
var firsttag = fwDocument.fwTags.fwFind("img", fwItem);

alert(firsttag);
}

</action-javascript>
</item-action>

Example: 3:
This method will find the first with a name attribute

48

function fwAfterEndBody()
{

// find first tag with a name parameter
var firsttag = fwDocument.fwTags.fwFind("img","name");

alert(firsttag.name);
}

Example: 4:
This method will find the first with a name attribute whose value is
"foobar".

function fwAfterEndBody()
{

// find first tag with a name parameter
var firsttag = fwDocument.fwTags.fwFind("img","name");

alert(firsttag.name);
}

Example 5:
This method will find the first with a name attribute.

function fwAfterEndBody()
{

// find first tag with a name parameter
var firsttag = fwDocument.fwTags.fwFind("img","name");

alert(firsttag.name);
}

Example 6:
This method will count up all the tags that appear in your document.
After finding the first tag it passes the current tag to the fwFind method as
the point to start the find from. This finds the first tag in the
document.

Note: It is more efficient to use fwFindAll for this sort of situation.

49

<page-action name="Find All Images">
<action-javascript>

function fwAfterEndBody()
{

// clear the counter
var totalImages = 0;

// find first tag
var currentTag = fwDocument.fwTags.fwFind("img");

while (currentTag)
{

totalImages++;

// find the next tag after the current tag
currentTag = fwDocument.fwTags.fwFind("img", currentTag);

}

alert("total = ",totalImages);
}

</action-javascript>
</page-action>

fwFindAll([owner][after tag][type [,name [,value]]]
This method allows you to find all the tags that satisfy a particular criteria. If
no tags are found then it will return an array with no elements. The array
will contain all the tags found in the order in which they where found.

Arguments:

• owner: Finds a tag that was owned (created) by this element.
FWElement

• after tag: Find a tag after this one. FWTag
• name Find a tag with an attribute of this name. FWTag
• value Find a tag that has an attribute with this value. FWTag

Example: 1:

This action will count up all the tags that appear in your document by
finding all the tags

50

<page-action name="Find All Images">
<action-javascript>

function fwAfterEndBody()
{

// find all the tags
var images = fwDocument.fwTags.fwFindAll("img");
alert(images.length);

}

</action-javascript>
</page-action>

Example: 2:

This action will count all the tags that belong to the item onto which
the action is applied.

<item-action name="Find All Images">
<action-javascript>

function fwAfterEndBody()
{// find all the tags that belong to this
item
var images = fwDocument.fwTags.fwFindAll("img",
fwItem);
alert(images.length);}

</action-javascript>
</item-action>

fwFindAllContent([owner][after tag][type [,name
[,value]]])
This method allows you to find all the tags that are contained within an
FWOutput. It refers to an array of tags.

Example:

The following example will remove all the tags except for those that are
within the <body></body>. This sort of technique can be useful for
generating server-side includes and page fragments.

51

<page-action name="Body Contents">
<action-javascript>

function fwBeforeEndHTML()
{

body = fwDocument.fwTags.fwFind("body");
bodyContent = body.fwFindAllContent();
html = fwDocument.fwTags.fwFind("html");
html.fwDelete();
fwDocument.fwTags.fwMove(bodyContent);

}

</action-javascript>
</page-action>

fwFindContent([owner][after tag][type [,name [,value]]])
This method allows you to Find the first occurrence of a tag that satisfies a
particular criteria. It will only search within the tag's contents and will not
search hierarchically through the tag tree. It returns the tag found or null.

Arguments:

• owner: Finds a tag that was owned (created) by this element.
FWElement

• after tag: Find a tag after this one. FWTag
• name: Find a tag with an attribute if name is FWTag. String
• value: Find a tag that has an attribute with this value. String

fwFindEnclosing(tag[,name[,value]])
This method is designed to find a tag that encloses a given tag. It returns
FWTag – the tag that has been found or null if nothing has been found.

Arguments:

• tag: the tag to be found String
• name: look for a tag with this argument. string
• value: the argument has to have this value. String

Example:

The following action will look for an enclosing link <a> tag. If it does not find
one it will add one. This sort of technique is useful when writing rollovers.

52

<page-action name="Find or Add Link">
<action-javascript>

function fwAfterEndBody()
{

// find first
var firstImg = fwDocument.fwTags.fwFind("img");

// find the link
var link = firstImg.fwFindEnclosing("a");

// if there is no link then add one
if (!link)
{

link = firstImg.fwAddEnclosing("a");
link.href='"#"';

}
}

</action-javascript>
</page-action>

fwFindRaw([string][,after tag][,owner])
This will find raw text in the tags. All the arguments are optional.
FWAttribute

If you do not specify a string then Freeway will return the first raw data that
matches the other search criteria. If you specify an after tag Freeway will
start looking after this tag. If you specify an owner then Freeway will only
return a tag created by that particular owner. If nothing matching this
criteria was found or no raw data was found it returns null.

Arguments:

• string: the text to be found.
• after tag: start looking after this tag FWTag
• owner: only find raw data with this owner FWElement

Example:

The following code appends the raw data "foobar" to the body tag. It then
uses fwFindRow to search for the text “foobar” and displays what it finds in
an alert.

53

<page-action name="foobar">
<action-javascript>

function fwAfterEndBody()
{

// Find the first img tag
var body = fwDocument.fwTags.fwFind("body");

// add the raw data "foobar"
body.fwAddRaw("foobar");

// find it
var newRaw = body.fwFindRaw("foobar");

// display an alert with it's value
alert(newRaw);

}

</action-javascript>
</page-action>

fwIndent()
This will increase the indent level if more readable code is specified in the
preferences.

fwMove([htmlTag/tagArray][after tag])
This action is designed to remove the tags from a page that make it a
frame-set so that you can more-easily view the NoFrames content (you do
not have to set your browser preferences to check it). As the Action is doing
something radical to your page it posts an alert warning you that something
you probably don't normally want to happen is going on. Generally you
would never post an alert during the publishing process. The action also
has a fwIsDirty method that will force the page to be republished, so that
you will always get the warning.

To remove the FrameSet tags the Action has to first remove the <frameset>
tag. Then it has to remove the <noframes> tag. However before it removes
the <noframes> tag it has to move <body> tag that is within it. It moves the
body tag by calling fwMove, and passing in an existing tag (the body tag).

Example:

54

<page-action name="Preview NoFrames Page">
<action-javascript>

function fwIsDirty()
{

return true;
}

function fwAfterEndBody()
{

alert('Your FrameSet has been deleted on page "',fwPage,
'" to allow you to preview the "','NoFrames', '"

content.');

// find and delete the <frameset> tag
var getFrm = fwDocument.fwTags.fwFind("frameset");
getFrm.fwDelete();

// find the <body> tag
var getBdy = fwDocument.fwTags.fwFind("body");

// find the <noframes> tag
var getNfm = fwDocument.fwTags.fwFind("noframes");

// move the <body> so it is after the <noframes> tag
// and no longer enclosed by it
getNfm.fwEnclosing.fwMove(getBdy, getNfm);

// delete the noframes tag
getNfm.fwDelete();

}

</action-javascript>
</page-action>

fwOutdent()
This will decrease the indent level if more readable code is specified in the
preferences.

fwToHTML([efficientCode][upperCase][newLineType])
This will convert a tag and it's contents into a text string. This text string is
the text that would be output when the tags are turned into HTML. This is
particularly useful if you want to make some parts of the page generated by

55

JavaScript within the page i.e. in the generated HTML page's
document.write.

Arguments:

• efficientCode 0 = use document setting, readable = 1 , efficient = 2
• upperCase 0 = use document setting, lowercase = 1, uppercase = 2
• newLineType 0= use document setting, Macintosh = 1,

UnixNewlines = 2, DOSNewlines = 3

Note: If you do not pass any arguments the document defaults will be used.

Example:

The following example will display the HTML of the item to which it is
applied in an alert.

<item-action name="fwToHtml">
<action-javascript>

function fwBeforeEndHTML()
{

ourTag = fwDocument.fwTags.fwFind(fwItem);
alert(ourTag.fwToHTML());

}

</action-javascript>
</item-action>

Class FWPage

This class represents a page within the Freeway document.

Properties (13)

fwAlignment
This is the alignment of the page. left = 1, center =2, right = 3 Integer

fwAlinkColor
This returns the active link color that has been set on the page. FWColor

fwBgColor
This returns the background color that has been set on the page.
FWColor

56

fwEncoding
This returns the Internet name encoding that has been set on a page (eg.
“ISO-8859-1”). String

fwFileName
This is the file name of the page. String

fwHeight
This is the height of the page within Freeway. Integer

fwHTMLLevel
This is the HTML level that will be generated from this page (HTML 3.2 = 1,
|HTML3.2+CSS = 2, HTML4 = 3).

Note: the return value of this is incorrect in Freeway 3 but is corrected in Freeway 3.1

fwLinkColor
This returns the link color that has been set on the page. FWColor

fwScript
This returns the script code of a page. (See Tech Note: “Localizing
Freeway Actions”)

Example:

The following code fragment behaves differently if the page has a script-
code of "1" i.e. is Japanese. It returns the encoding that has been set on a
page.

// if we are on a Japanese page then add Japan in Japanese
if (fwPage.fwScript==1)

日本addOption(tag, " ");
else

addOption(tag, "Japan");

fwSystemMetaTags
This returns a list of system meta tags on the page.FWListData

fwUserMetaTags
This returns a list of user meta tags on the page.FWListData

fwVlinkColor
This returns the visited link color (FWColor) that has been set on the page.
FWColor

fwWidth
This is the width of the page. Integer

57

Class FWParameter

This class is the basic parameter that is stored for parameters that are set
in the Freeway Actions by the user such as <action-text>, <action-
number>, <action-checkbox>, and <action-popup> are all of this type and
fwValue is a string for these. There are three subclasses of FWParameter
which have other parameter types. These are Class FWLinkParameter,
Class FWColorParameter and Class FWFileParameter with its own subclass
Class FWImageParameter.

Properties (8)

fwAction
The action to which this parameter belongs. FWAction

fwBoolValue
The value of this parameter as a Boolean. Boolean

fwContentFile
This returns a string that is the full filename of parameters source if it has a
source file. This is only possible for <action-file> and <action-image>. If
the parameter has no file it returns the empty string. String

fwHasImages
Returns whether there are any images associated with this parameter. It
returns true only if the parameter. Has images that are generated, not if it
has a file associated with it. Boolean

fwName
Name of the parameter. String

fwParameters
The parameter list of which this parameter is a member.

fwType
The type of the parameter. It has the following values:

Code

58

fwValue
The value that has been assigned to this parameter or set by the user. The
type depends on the type of parameter (see individual parameter types eg
FWlinkParameter, FWColorParameter, FWFileParameter,
FWImageParameter).

Methods (3)

fwClear
This clears the current parameter.

fwFindAllImages()
This will return all the images associated with a particular parameter in an
array. String

fwFindImage(imageNumber)
This returns a specific image associated with the image number
parameter. If the image is sliced then there can be more than one image.
The index of the image is zero-based. If there is no image at a particular
index then it will return null. If the parameter is not an image parameter it
will return null. String

User Methods/Properties (4)

fwEnable
This property allows you to control if a parameter is enabled in the interface
(in the Actions palette). If Boolean you define this property as a method
then Freeway will evaluate the method to return a Boolean value and use
that to determine if the parameter is enabled. If you define this property as
a Boolean i.e. set it to true or false then Freeway will use this value to
determine if the parameter is enabled.

Example:

This example sets the fwEnable property of the parameter to be a Boolean
from the value of a checkbox. Using this technique the checkbox will control
if the parameter "param1" is enabled in the interface.

59

<item-action name="Enable Test">
<action-checkbox name ="enable"/>
<action-text name ="param1"/>
<action-javascript>

function fwInterface()
{

var enabled = fwParameters["enable"].fwBoolValue;
fwParameters["param1"].fwEnable = enabled;

}

</action-javascript>
</item-action>

Example:

This example sets the fwEnable property of the parameter to be the method
CalcVisibility which is then evaluated to determine if the parameter is
enabled or not. Using this technique the checkbox will control if the
parameter "param1" is enabled in the interface.

<item-action name="Enable Test">
<action-checkbox name ="enable"/>
<action-text name ="param1"/>
<action-javascript>

function CalcEnable()
{

var enabled = fwParameters["enable"].fwBoolValue;
return enabled;

}

function fwInterface()
{

fwParameters["param1"].fwEnable = CalcEnable;
}

</action-javascript>
</item-action>

fwMenuItems
This property allows you to generate the items that appear in a popup
menu programatically. This has the advantage that you can make menus
that reflect names of items on a page or are derived from the results of

60

executing OSA scripts. This property should either be an array or a function
that returns an array.

Example: 1:

This code will create a menu with the item labelled "item [0]", "item[1]"
etc.

<item-action name="Test Popup">
<action-popup name="Test Popup"/>
<action-javascript>

function fwInterface()
{

var array = new Array;
for (i = 0 ; i < 20 ; i++)

array[i]="test ["+i+"]";
fwParameters["Test Popup"].fwMenuItems = array;

}

</action-javascript>
</item-action>

Example: 2:

This code will create a popup menu that is based on values selected from
another menu.

61

<page-action name="Smart Popups">
<action-popup name="Data Base">

<value name="Customers.fp5"/>
<value name="Products.fp5"/>
<value name="Orders.fp5"/>

</action-popup>
<action-popup name="Fields"/>
<action-javascript>

function fwInterface()
{

var array = new Array;
var dataBase = fwParameters["Data Base"].toString();

switch (dataBase)
{

default:
case "Customers.fp5":
array.push("name");
array.push("address");
array.push("city");
array.push("state");
array.push("zip");
break;

case "Products.fp5":
array.push("quantity");
array.push("amount");
array.push("total");
array.push("tax");
break;

case "Orders.fp5":
array.push("product_id");
array.push("price");
array.push("weight");
array.push("color");
array.push("buy_url");
break;

}

fwParameters["Fields"].fwMenuItems = array;
}

62

Example: 3:

This code will create a menu based on the selection of a file. The file is
expected to be of the format:

Customers.fp5
name
address
city

Products.fp5
product_id
price
weight

Orders.fp5
quantity

The action then parses this file and creates two menus from it

63

</page-action>
<page-action name="Smart File Popups">
<action-file name="DB File">

<value type="TEXT">
</action-file>
<action-popup name="Data Base">
</action-popup>
<action-popup name="Fields"/>
<action-javascript>

function BuildDataBaseMenu(file)
{

file.fwPosition=0;
var array = new Array;

// read all the lines in the file
while (file.fwAvailable)
{

var s=file.fwReadln();

// ad it to the menu only if it contains the string
".fp5"

if (s.indexOf(".fp5")>0)
array.push(s);

}

return array;
}

function BuildFieldMenu(file, database)
{

file.fwPosition=0;
var array = new Array;

// skip to the 'database'
while (true)
{

if (!file.fwAvailable)
return array;

var s=file.fwReadln();
if (s==database)
break;

64

}

// read it's fields
while (true)
{

if (!file.fwAvailable)
return array;

var s=file.fwReadln();
if (s.indexOf(".fp5")>0)
return array;

array.push(s);
}

return array;
}

function GetMenuSelection(menu, menuArray)
{

var selection = menu.toString();
if (!selection && menuArray.length)

return menuArray[0];

for (var i in menuArray)
{

if (menuArray[i]==selection)
return selection;

}

if (menuArray.length)
return menuArray[0];

return "";
}

function fwInterface()
{

var theDBfile = fwParameters["DB File"];
var theDatabaseMenu = fwParameters["Data Base"];
var theFieldMenu = fwParameters["Fields"];

if (theDBfile.fwHasFile)

65

{
theFile = new FWFile;
if (theFile.fwOpenRead(theDBfile))
{
var dataBaseMenuOptions = BuildDataBaseMenu(theFile);
theDatabaseMenu.fwMenuItems = dataBaseMenuOptions;
var dataBaseOption=GetMenuSelection(theDatabaseMenu,

dataBaseMenuOptions);

var fieldMenuOptions = BuildFieldMenu(theFile,
dataBaseOption);

theFieldMenu.fwMenuItems = fieldMenuOptions;
fieldMenuOptions.toString();

theFile.fwClose();

theDatabaseMenu.fwEnable=true;
theFieldMenu.fwEnable=true;
return;

}
}

theDatabaseMenu.fwEnable=false;
theFieldMenu.fwEnable=false;

}

</action-javascript>
</page-action>

fwTitle
This property allows you to control the title of a parameter as it appears in
the actions palette. If you define this property as a method then Freeway
will evaluate the method to return a string value which will be used to set
the title that appears in the parameter. If you define this property as a string
value then Freeway will use this value as the title. String

Example: 1:

The following example will change the title of one of "param1" between on
and off by setting the fwTitle property to the string "on" or "off"

66

<item-action name="Title Test">
<action-checkbox name ="on/off"/>
<action-text name ="param1"/>
<action-javascript>

function fwInterface()
{

var isOn = fwParameters["on/off"].fwBoolValue;
if (isOn)

fwParameters["param1"].fwTitle = "on";
else

fwParameters["param1"].fwTitle = "off";
}

</action-javascript>
</item-action>

Example: 2:

The following example will change the title of one of "param1" between on
and off by setting the fwTitle property to the method CalcTitle.

67

<item-action name="Title Test">
<action-checkbox name ="on/off"/>
<action-text name ="param1"/>
<action-javascript>

function CalcTitle()
{

var isOn = fwParameters["on/off"].fwBoolValue;
if (isOn)

return "on";
else

return "off";
}

function fwInterface()
{

fwParameters["param1"].fwTitle = CalcTitle;
}

</action-javascript>
</item-action>

fwVisible
This property allows you to control if a parameter appears in the interface
(in the actions palette) or not. Boolean If you define this property as a
method then Freeway will evaluate the method to return a Boolean value
and use that to determine the parameter’s visibility. If you define this
property as a Boolean i.e. set it to true or false then Freeway will use this
value to determine if the item is visible or not.

Example:
This example sets the fwVisible property of the parameter to be a Boolean
from the value of a checkbox. Using this technique the checkbox will control
if the parameter "param1" is visible in the interface.

68

<item-action name="Visible Test">
<action-checkbox name ="visible"/>
<action-text name ="param1"/>
<action-javascript>

function fwInterface()
{

var visible = fwParameters["visible"].fwBoolValue;
fwParameters["param1"].fwVisible = visible;

}

</action-javascript>
</item-action>

Example:

This example sets the fwVisible property of the parameter to be the
method CalcVisibility which is then evaluated to determine if the
parameter is visible or not. Using this technique the checkbox will control if
the parameter "param1" is visible in the interface.

<item-action name="Visible Test">
<action-checkbox name ="visible"/>
<action-text name ="param1"/>
<action-javascript>

function CalcVisibility()
{

var visible = fwParameters["visible"].fwBoolValue;
return visible;

}

function fwInterface()
{

fwParameters["param1"].fwVisible = CalcVisibility;
}

</action-javascript>
</item-action>

Class FWParameterList

This defines a list of FWParameters.

69

Example:

Get the Boolean value of the parameter "myParam".

var isOn = fwParameters["myParam"].fwBoolValue;
or

var isOn = fwParameters.myParam.fwBoolValue;
Example:

Get the Boolean value of the first parameter.

var isOn = fwParameters[0].fwBoolValue;
Example:

Get the Boolean value of the last parameter.

var isOn = fwParameters[fwParameters.fwLength - 1].fwBoolValue;
Class FWTag

This class represents a tag. The attributes appear as normal properties, so
you can add or change them by setting them as properties.

You can construct these by using fwAdd and fwAddEnclosing. This class is
a subclass of Class FWOutput.

Example: 1:

The following Action will name all the images foobar0, foobar1, foobar2,
etc.

70

<page-action name="Name all img">
<action-javascript>

function fwAfterEndBody()
{

// find all the tags that belong to this item
var images = fwDocument.fwTags.fwFindAll("img");
for (i in images)
{

var image = images[i];
image.name = '"'+'foobar'+i+'"';

}
}

</action-javascript>
</page-action>

Example: 2:

The following Action will name all the images without names, so that the
first will have name=”foobar0”, the second will have name=” foobar1”, then
name=” foobar2” etc

71

<page-action name="Name all unnamed img">
<action-javascript>

function fwAfterEndBody()
{

// find all the tags that belong to this item
var j = 0;
var images = fwDocument.fwTags.fwFindAll("img");
for (i in images)
{

var image = images[i];
if (!image.name)
{
image.name = '"'+'foobar'+j+'"';
j++;

}
}

}

</action-javascript>
</page-action>

Properties (2)

fwClose
This determines if the closing form of the tag is written. e.g. the </p> of a
<p> tag.

fwOwner
The primary element that created this tag.

Method

fwAddJToTag(name,value)
This method is designed to make it easier to append JavaScript statements
to tag values. Your value is appended to the end of any existing value but
before the statement return true or return false.

Arguments:

name the names of the argument to addvalue the argument to add

Example:

72

This will add two alert calls to the onclick of the enclosing link so that it is
terminated with return false.

<item-action name="Click Alert">
<action-javascript>

function fwAfterEndBody()
{

// find all the tags
var image = fwDocument.fwTags.fwFind("img");
var link = image.fwFindEnclosing("a");
link.fwAddJToTag("onclick","return false");
link.fwAddJToTag("onclick","alert('click')");
link.fwAddJToTag("onclick","alert('click again')");

}

</action-javascript>
</item-action>

Global Properties and Methods

prompt(string[,string,[script]])

Arguments:

• String that appears as a prompt.
• Default Text.
• Script for the text to be input in (default is roman).

Return Value:

Null if the user clicked cancel otherwise the string that they entered.
This will prompt the user for input.

Example:

var s = prompt("Enter Your Name:","Gustav");

Will give rise to this dialog, with "Gustav" as the default value.

73

Note: this dialog is intended for the user to enter small amounts of text. It is not possible
to enter more than 255 characters. If you want the user to edit a lot of text you should
use fwBigPrompt.

fwBigPrompt(string[,string])

Arguments:

• String that appears as a prompt
• Default Text

Return Value:

Null if the user clicked cancel otherwise the string that they entered.
This will prompt the user for input.

Example:

var s = fwBigPrompt("Chapter 1","It was a hot sunny day but
mistakenly Gustav put on his felt hat and a green coat...");

Will give rise to this dialog:

74

Class FWAction

fwParameterChanged(newParameter,oldParameter)

Arguments:

The new parameter that is intended to be set and the existing parameter.

Return Value:

If this function returns true then Freeway will set the new parameter. If the
function returns false the new parameter will not be set. If the function
simply returns nothing then the parameter will be set.

Description:

This method, if present in your Freeway Action, is called when Freeway
after the user has changed a parameter in a Freeway action. It gives you,
the action writer, an opportunity to validate what has been set, correct it or
reject it. It also gives you an opportunity to set the values of other
parameters if you need to.

Example:

This example action will validate the field "test" and reject any value that is
greater than 4 characters.

75

<page-action name="Test Parameter Changed">
<action-text name="text" title="My Field">
<action-javascript>

function fwParameterChanged(newParam, oldParam)
{

switch (newParam.fwName)
{

// check the "text" parameter
case "text":
var str = newParam.toString();
if (str.length>4)
{
alert('The field "', newParam.fwTitle,'" can only

contain 4 characters.');
return false;

}
break;

}

return true;
}

</action-javascript>
</page-action>

If you enter more than 4 characters the previous value will be restored and
you will get this dialog.

76

Example:

This example will change the value entered by the user truncating it to 4
characters.

function fwParameterChanged(newParam, oldParam)
{

switch (newParam.fwName)
{

// check the "text" parameter
case "text":
var str = newParam.toString();
if (str.length>4)
{
alert('The field "', newParam.fwTitle,
'" has been truncated to 4 characters.');

newParam.fwValue=str.slice(0,4);
}
break;

}

return true;
}

Example:

This example has a popup menu and a text field. It the user selects a value
from the popup the value of the text field will change as well.

77

<page-action name="Test Parameter Changed">
<action-popup name="Material">
 <value name="Wood"/><value name="Paper"><value name="Steel"><value
name="Plastic">
</action-popup>
<action-text name="text" title=" ">
<action-javascript>

function fwParameterChanged(newParam, oldParam)
{

switch (newParam.fwName)
{

case "Material":
var str = newParam.toString();
fwParameters["text"].fwValue = str;
break;

}
}

</action-javascript>
</page-action>

fwAtContent([string])

Arguments:

The full path of the file that is the original content file.

Return Value:

The full path of the content file that you want to be used in it's place. If you
do not want to change the file return the file that was passed in or null.

Description:

This method, if present in your Freeway Action, is called when Freeway is
going to make a given content file a part of your site and referenced by a
given item. It makes it possible for a Freeway action to specify a different
file in it's place. This is very useful if you have a Freeway Action that will,
say, generate a custom flash-file as a temporary file and wants that file to
be used rather than the origins.

Example:

The following example generates a new flash file based on the original one
but sets the BG colour of the flash file to that of the item.

78

function fwContentFile(inFileStr)
{

inFile = new FWFile;
outFile = new FWFile;

if (inFile.fwOpenRead(fwItem) &&
 // open the file associated with the content of fwItem

outFile.fwOpenWrite(inFile.toString(),"SWFL","SWF2"))
 // open a file for writing with the same name as inFile

{
// read the file to get the info
var info = inFile.fwReadFlashInfo();

// set the BG colour of the move to the same as the item
info.fwBgColor = fwItem.fwBgColor.fwValue;

// reset the file position back to the begining of the
file

inFile.fwPosition = 0;

// replace the urls in the inFile writing them to the
outFile

outFile.fwWriteFlash(info, inFile);

// close both files
outFile.fwClose();
inFile.fwClose();

// refurn the path of the new file
return outFile.fwPathName;

}

outFile.fwClose();
inFile.fwClose();

return inFileStr;
}

Property

fwActionType(read)

Description:

79

This is the type that an action is. The following types are defined

Object Action = 0
Page Action= 1
Item Action = 2
Library Action = 3

Property

fwVersion(read)

Description:

This is the version as defined in version attribute of the action-version tag
within an action. So for an action with the following version information:

<action-version version="1.0">
“Non Repeating BG” Action
Softpress Systems Limited 2000

</action-version>

The code fragment:

alert(fwVersion);

Will yield an alert displaying "1.0"

If the version has not been defined then the property will return null.

Class FWElement

Property

fwPage

Description:

The page that an element appears on. For a FWItem this page will be the
page that it is on. For a FWPage it will be it's self. For a FWFolder it will be
null.

fwFindAction([type][name/namearray][searchchildren])

Arguments:

• type - the type of actions to search for:

80

All Actions = -1
Object Action = 0
Page Action = 1
Item Action = 2
Library Action = 3

• name (string) or array of strings - the name of the action(s) to search for:
• searchchildren (boolean) - should the children be searched for this

action

Returns:

The first action that satisfies the search, or null if nothing has been found.

Description:

This method is used to find other actions within the Freeway document.
You might typically use it of you have an action that works with one or more
actions. In such a case you will need to find those actions that you wish to
work with.

Example:

The following code fragment will find the first item action with the name of
"Wibble" that is applied to the page.

var action = fwPage.fwFindAction(2,"Wibble", true);

fwFindAllActions([type][name/namearray][searchchildren])

Arguments:

• type - the type of actions to search for:
All Actions = -1
Object Action = 0
Page Action = 1
Item Action = 2
Library Action = 3

• name (string) or array of strings - the name of the action(s) to search
for:

• searchchildren (boolean) - should the children be searched for this
action

Returns:

81

An array of all the actions that satisfy the search. If no actions are found
then an empty array will be returned.

Description:
This method is used to find other actions within the Freeway document.
You might typically use it of you have an action that works with one or more
actions. In such a case you will need to find those actions that you wish to
work with.

Example:
This code snippet will find all the actions that are applied to a page or items
on that page.

var array = fwPage.fwFindAllActions(true);
alert(array.join("\r"));

Class FWFile

fwModificationDate()

Arguments:

None:

Returns:

A JavaScript date object with the modification date of the file.

Description:

This will return the date that a file was last modified.

fwWriteBytes([string/num/array/bool..string/num/array/boo
l])

Arguments:

One or more string, number, boolean or array objects

Description:

This method allows you to write binary data to a file. You can pass in a
number of arguments that will be written. Arguments are written as follows:

1. Strings - one byte is written for each character in the string.

82

2. Numbers - numbers are converted into integers. The lowest byte of the
integer is written.

3. Boolean - 0x01 is written if the value is true otherwise 0x00 is written

4. Null - 0x00 is written

5. void - 0x00 is written

6. Arrays - the elements of the arrays are written recursively using
fwWriteBytes.

7. Other objects - nothing is written

Example:

The following action will write a 1 pixel GIF of a colour set in by the colour
parameter when you click on the button.

83

<page-action name="Make GIF">
<action-color name="color">
<action-button name="make gif" onclick = "makeGIF()">
<action-javascript>

function GetColorPalette()
{

var result = new Array;
var color = fwParameters["color"].fwValue;

if (color.fwHasValue)
{

var selecetdColor = color.fwValue;

result.push(selecetdColor.red);
result.push(selecetdColor.green);
result.push(selecetdColor.blue);

}
else
{

result.push(0xff);
result.push(0xff);
result.push(0xff);

}
return result;

}

function makeGIF()
{

outFile = new FWFile;

var color = GetColorPalette();

if
(outFile.fwLocateWrite("Graphic","peanut.gif","GIFf","MSIE"))

{
outFile.fwWriteBytes(
'G', 'I', 'F',// Signature
'8', '9', 'a',// Version
1, 0, // Width: 1 pixel
1, 0, // Height: 1 pixel
0x80, // Flag: 1-bit global Color table
0, // No background Color

84

0, // No aspect ratio

color, // Palette
0, 0, 0,

'!', // GIF extension label
0xf9, // Graphic control label
4, // Extension block size
false, // Transparency flag
0, 0, // No delay
0, // Transparent Color
0, // Block terminator

',', // Image descriptor label
0, 0, // X position
0, 0, // Y position
1, 0, // Width: 1 pixel
1, 0, // Height: 1 pixel
0, // Flag: not interlaced

1, // LZW codesize
1, // LZW data blocksize
0x32, // LZW code
0, // Block terminator

';' // GIF terminator
)

}

outFile.fwClose();
}

</action-javascript>
</page-action>

fwWriteShorts([num/array/bool..num/array/bool])

Arguments:

one or number, Boolean or array objects

Description:

This method allows you to write binary data to a file. You can pass in a
number of arguments that will be written. Arguments are written as follows:

85

1. Numbers - numbers are converted into integers. The two lowest bytes
of the integer are written.

2. Boolean - 0x0001 is written if the value is true otherwise 0x0000 is
written

3. Null - 0x0000 is written

4. void - 0x0000 is written

5. Arrays - the elements of the arrays are written recursively using
fwWriteShorts

6. Other objects - nothing is written

Note: If the property fwReverseBytes is set then the byte order of all the values
written will be reversed.

fwWriteLongs([num/array/bool..num/array/bool])

Arguments:

one or number, Boolean or array objects

Description:

This method allows you to write binary data to a file. You can pass in a
number of arguments that will be written. Arguments are written as follows:

1. Numbers - numbers are converted into integers. All four bytes of the
integer are written.

2. Boolean - 0x00000001 is written if the value is true otherwise
0x00000000 is written

3. Null - 0x00000000 is written

4. void - 0x00000000 is written

5. Arrays - the elements of the arrays are written recursively using
fwWriteLongs

6. Other objects - nothing is written

86

Note: If the property fwReverseBytes is set then the byte order of all the values
written will be reversed.

fwReadByte()

Arguments:

returns - an integer

Description:

This reads a single byte from the file.

fwReadShort()

Arguments:

returns - an integer

Description:

This reads a two bytes from a file.

Note: If the property fwReverseBytes is set then the byte order of all the values read
will be reversed.

Method

fwReadLong()

Arguments:

returns - an integer

Description:

This reads a four bytes from a file. The highest bit of the byte is discard -
this is because integer values in this JavaScript implementation are not true
four byte values. If you need this top bit you will have to use two calls to
fwReadShort and some general trickery after that.

Note: If the property fwReverseBytes is set then the byte order of all the values read
will be reversed.

87

Method

fwReadFlashInfo()

Arguments:

None:

Returns:

An object with properties that are set from parsing a flash file.

Description:

This method will parse a Macromedia Flash file and return information
about that file in an object. If it fails to parse the file it will return null.
Parsing starts from the current read position. It is intended that the should
the Actions writer want to make changes to a flash file then they should
amend the properties of the object and call the fwWriteFlash to create a
new flash file.

Example:

The following action will post the background colour of a flash file in an
alert.

88

<item-action name="Flash Sample">
<action-button name="BG Colour" onclick="BGColour()">
<action-javascript>

function BGColour()
{

inFile = new FWFile;

if (inFile.fwLocateRead("Locate Flash File","SWFL"))
{

var info = inFile.fwReadFlashInfo();
if (info)
alert("Background Colour:\r",

" red=",info.fwBgColor.red,"\r",
" green=",info.fwBgColor.green,"\r",
" blue=",info.fwBgColor.blue);

else
alert("Not a flash file");

}
}

</action-javascript>
</item-action>

Method

fwWriteFlash(flashInfoObject,FWFile)

Arguments:

• flashInfoObject - a Flash Info object that specifies the attributes of the
flash file that should be replaced.

• FWFile - the source file that is read. The contents of this file will be
written with the substutions specified in the flashInfoObject.

Returns:

True/False - was the file successfully written.

Description:

This method provides a means by which a new flash file can be generated
from an existing one with certain changes made specified by the Flash Info

89

Object. This means that it is possible to generate a new copy of a flash file
with some changes. In particular the Actions writer has control of:

a) The URLs embedded in a Flash Movie
b) The Background colour of the Flash Movie
c) If the movie is protected against editing (it is possible to set this but not

to clear this attribute)
d) The portion of the Flash Movie that is visible (i.e. it's bounding box)

Details of these properties are given in the details about the Flash Info
Object.

The method will start reading the flash file from the current position. This
means if you have already read the file you will have to set the position
back to '0' before you pass the file in.

90

Example:
The following Example will write a new copy of a flash file with a white
background.

<item-action name="Flash Sample">
<action-button name="White BG Colour" onclick="WhiteBGColour()">
<action-javascript>

function WhiteBGColour()
{

inFile = new FWFile;

if (inFile.fwLocateRead("Locate Flash File","SWFL"))
{

var info = inFile.fwReadFlashInfo();
if (info)
{
// set the BG to be white
info.fwBgColor.red = 255;
info.fwBgColor.green = 255;
info.fwBgColor.blue = 255;

var newFileName = "white "+inFile.toString();
outFile = new FWFile;
if (outFile.fwLocateWrite("New

File",newFileName,"SWFL","SWF2"))
{
// reset the file position
inFile.fwPosition = 0;

// replace the urls in the inFile writing them to
the outFile

outFile.fwWriteFlash(info, inFile);

// close both files
outFile.fwClose();
inFile.fwClose();

}
}

}
}

</action-javascript>

91

</item-action>

Property

fwPathName

Description:

This returns the full path of a file.

Property

fwReverseBytes

Description:

This allows you to set and clear the reversing of the byte order. You will
need to do this if reading PC formated binary files as the PC byte order is
different than on a Macintoish. This affects the methods:

fwWriteShort
fwWriteLong
fwReadShort
fwReadLong

Flash Info Object

This Object is a normal JavaScript object in which a number of properties
are specified. This object is returned by the fwReadFlashInfo of FWFile.
And is passed in to the fwWriteFlash method of FWFile.

Property

fwUrls

Description:

This is an array of strings that specifies URLs and their Targets. It is
formatted in pairs so that the first string is a URL, the second is it's target.

Property

fwTop

Description:

92

The top co-ordinate of the bounding box of the flash movie. These co-
ordinates are 20 times the co-ordinates in Freeway.

Property

fwBottom

Description:

The bottom co-ordinate of the bounding box of the flash movie. These co-
ordinates are 20 times the co-ordinates in Freeway.

Property

fwLeft

Description:

The left co-ordinate of the bounding box of the flash movie. These co-
ordinates are 20 times the co-ordinates in Freeway.

Property

fwRight

Description:

The right of the bounding box of the flash movie. These co-ordinates are 20
times the co-ordinates in Freeway.

Property

fwBgColor

Description:

The background colour of the Flash Movie. This is an object with properties
"red", "green" and "blue". These properties specify the red green and blue
components of the colour with '0' being the minimum and '255' the
maximum.

93

Property

fwProtected

Description:

This defines of the Flash Movie is protected or not. Protected movies can
not be opened in another authoring program.

Class FWItem

Method

fwTableCells()

Arguments:

none.

Returns:

An array of rows. containing an array of the items that appear in each row.

Description:

This function returns all the cells that appear in a table. The result is an
array with an entry for each row in the table. Each of these rows is an array
with an array of table cells, one for each column. The elements in the
arrays are '0' based - so the first row will be row '0'. If the table contains
spans (i.e. cells that span more than a single roe or column) then the table
cell will be repeated in the table.

94

Example:

The following code will list all the cells in a table, with information about
their spans, in an alert.

<item-action name="Table Test">
<action-button name="List Cells" onclick="ListCells()">
<action-javascript>

function ListCells()
{

var tableCells = fwItem.fwTableCells();
if (tableCells)
{

var s ="";
for (var iRow in tableCells)
{
for (var iColumn in tableCells[iRow])
{
cell = tableCells[iRow][iColumn];
if (cell.fwRow == iRow && cell.fwColumn == iColumn)
{
s += iRow+","+iColumn;
if (cell.fwColumnSpan > 1)
s += ', col span = '+cell.fwColumnSpan;

if (cell.fwRowSpan > 1)
s += ', row span = '+cell.fwRowSpan;

s += "\r";
}

}
}

alert(s);
}

}

</action-javascript>

Property

fwBgColor

Description:

The Fill colour of an item as a FWColor.

95

Property

fwName

Description:

If the item is a form item this is the 'name' that has been entered for the firm
item by the user.

Property

fwText

Description:

If the item is a text field this is the text that has been entered by the user.

Property

fwValue

Description:

If the item is a form item this is the value that has been entered by the user.

Property

fwRows

Description:

This is only defined if the item is a table in which case it returns the number
of rows in the table.

Property

fwColumns

Description:

This is only defined if the item is a table in which case it returns the number
of columns in the table.

96

Property

fwBorder

Description:

This is only defined if the item is a table in which case it returns the width of
the table border.

Property

fwCellPadding

Description:

This is only defined if the item is a table in which case it returns the table's
cell padding.

Property

fwCellSpacing

Description:

This is only defined if the item is a table in which case it returns the table's
cell spacing.

Property

fwRow

Description:

This is only defined if the item is a table cell in which case it returns the row
that the table cell appears in. The row is '0' based so all row numbers start
from '0'.

Property

fwColumn

Description:

This is only defined if the item is a table cell in which case it returns the
column that the table cell appears in. The column is '0' based so all column
numbers start from '0'.

97

Property

fwRowSpan

Description:

This is only defined if the item is a table cell in which case it returns number
of rows that the table cell spans.

Property

fwColumnSpan

Description:

This is only defined if the item is a table cell in which case it returns number
of columns that the table cell spans.

Property

fwExportType

Description:

This is the export-type of the item. It has the following values:

0 Other
1 HTML Item (including Table & Table Cell)
2 Export as GIF file(s)
3 Export as JPEG file(s)
4 Export as URL item
5 Export as PNG file(s)
6 Map Areathe item is an image map
101 Checkbox (Form Item)
102 Radio Button (Form Item)
103 Text Field (Form Item)
104 List/Popup (Form Item)
105 Text Area(Form Item)
106 Java Applet
107 PlugIn
108 Passthrough Graphic
109 QuickTime
110 Flash
111 Text
112 Markup Item

98

Example:

The following action will return the type of the item onto which it is applied
in an alert.

99

<item-action name="Test Export Type">
<action-button name="Export Type"
onclick="alert(MakeMessage(fwItem.fwExportType))">
<action-javascript>

function MakeMessage(item)
{

return ExportType2String(fwItem.fwExportType)
+ ' (' + fwItem.fwExportType+ ')';

}

function ExportType2String(item)
{

switch (item)
{

case 0 : return "Other";
case 1 : return "HTML";
case 2 : return "GIF";
case 3 : return "JPEG";
case 4 : return "URL";
case 5 : return "PNG";
case 6 : return "Map Area";

case 100 : return "Checkbox";
case 101 : return "Radio";
case 102 : return "Button";
case 103 : return "Text Field";
case 104 : return "List";
case 105 : return "Text Area";
case 106 : return "Java Class";
case 107 : return "PlugIn";
case 108 : return "External Graphic [passthrough]";
case 109 : return "QuickTime";
case 110 : return "Flash";
case 111 : return "Text";
case 112 : return "Markup Item";

}
}
</action-javascript>
</item-action>

Class FWPage

100

This class represents a page within the Freeway document.

Property

fwTarget

Description:

The base target specified for a page.

Class FWAttribute

This class represents an attribute of a FWTag. Consider the following snippit
of HTML.

<img src="Resources/_clear.gif" border=0 width=50 height=1
alt="">

In the tag tree this would be represented as one FWTag. The attributes of the
tag:

src="Resources/_clear.gif"
border=0
width=50
height=1
alt=""

Are each represented as a FWAttribute.

When you add a an attribute to a tag (in JavaScript you do this by just
adding a property)

myTag.onclick='"alert(1);'";
a new FWAttribute will be created.

Property

fwValue

Description:

This is the text value of the attribute.

101

Property

fwOwner

Description:

This is the object that is responsible for creating this attribute. Generally it is
NULL, however Freeway currently defines it for href and color attributes.

Example:

The following action will post an alert with the links that are defined on a
page.

102

<page-action name="Test Owner">
<action-javascript>

function fwAfterEndBody()
{

var bodyTag = fwDocument.fwTags.fwFind("body");
var aTags = bodyTag.fwFindAll("a");
var message = new Array;

if (aTags.length)
{

message.push("LINKS");
for (var i in aTags)
{
var a = aTags[i];
href = a.href;
message.push(href.fwValue+" - "+href.fwOwner);

}
}
aTags = bodyTag.fwFindAll("area");
if (aTags.length)
{

message.push("MAP AREAS");
for (var i in aTags)
{
var a = aTags[i];
href = a.href;
message.push(href.fwValue+" - "+href.fwOwner);

}
}

if (message.length)
alert(message.join("\r"));

else
alert("no links");

}

</action-javascript>
</page-action>

Class FWOutput (additional information)

Property

103

fwIsRaw

Description:

This retirns if a particular tag is raw text data.

Method

fwFindEnclosing([tag/tagarray][,name[,value]])

Arguments:

this can now take an array of tags in which case it will look for the first of
any of the tags in that array.

Method

fwFindEnclosing([tag/tagarray][,name[,value]])

Arguments:

this can now take an array of tags in which case it will look for the first of
any of the tags in that array.

Method

fwFind([owner][after tag][type/typearray [,name
[,value]]])

Arguments:

This can now take an array of tag types in which case it will look for the first
of any of the tags in that array.

Method

fwFindAll([owner][after tag][type/typearray [,name
[,value]]])

Arguments:

This can now take an array of tag types in which case it will look for all of
any of the tags in that array.

104

Method

fwAddCSSStyles([,after tag][string])

Arguments:

• after tag - the tag to add this after.
• string - the name if the script tag to add

Returns:

A <style> tag

Description:

This is used to add a CSS style definition to the HTML output. You
optionally specify the style type but by default it is "text/css". Freeway will
look for a tag of the type you request. If it finds one it will return that. If it
does not it will create one. This method is very useful for adding additional
CSS style definitions to your page. In addition to creating the tag freeway
will correctly enclose it in the correct hiding mechanism to prevent early
browsers that do not understand CSS style definitions from having
problems.

Example:

The following function will add the style definition:

#divText { position: absolute; top:0; left:0 }
creating the tags

<style type="text/css">
<!--
-->
</style>

If they are not there

105

function fwAfterEndBody()
{

var head = fwDocument.fwTags.fwFind("head",fwItem);
if (head)
{

var cssStyles = head.fwAddCSSStyles();
cssStyles.fwAddRawln("#divText { position: absolute;

top:0; left:0 }");
}

}

Method (additional information)

fwAdd(name/htmltag[,after][,hasClose])

Arguments:

after - this is the content object that it should be placed after. If there is no
content object then it will be appended. If the same content object as the
method object is passed then the new tag will be inserted at the head of the
list.

Example:

var tag = myTag.fwAdd("option",myTag);

Will add a new "option" tag as the first tag within the myTag.

Method (additional information)

fwAddRaw([text1][,after][,text2])

Arguments:

after - this is the content object that it should be placed after. If there is no
content object then it will be appended. If the same content object as the
method object is passed then the raw text will be inserted at the head of the
list.

106

Class FWListData (additional information)

Method

fwNameAt(index)

Arguments:

index - the zero-based index of the name.

Description:

The FWListData is used to represent name value pairs. This enables yuou
to retrieve the name of a given item in the list.

107

Example:

The following action will list all the user-tags when you click on the button. It
uses fwNameAt to get the name of the tag.

<page-action name="User Meta Tags Test">
<action-button name="User Meta Tags" onclick="listTags()"/>
<action-javascript>

function listTags()
{

var result = new Array;

// get the list of tags
var userTags = fwPage.fwUserMetaTags;

// go through all items in the list
for (var i in userTags)
{

var tagName = userTags.fwNameAt(i);
var tagValue = userTags[i];

alert(tagName, '=', tagValue);
}

}

</action-javascript>
</page-action>

Method

fwFindAll(string)

Arguments:

string - the name of the tag to find.

Description:

This will return an array of all the tag values that have this particular name.

108

Example:

The following action will list all the tag values of a particular name, which is
by default the GENERATOR.

<page-action name="Get Meta Tags Test">
<action-text name="tag" default="GENERATOR" />
<action-button name="Get" onclick="listTags()"/>
<action-javascript>

function listTags()
{

// get the list of tags
var userTags = fwPage.fwUserMetaTags;

var tagList = userTags.fwFindAll(fwParameters["tag"]);

alert(tagList.join("\r"));
}

</action-javascript>
</page-action>

109

Please note the following disclaimer specifically with respect to this document:

SOFTPRESS SYSTEMS LIMITED LICENSOR(S) MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE. SOFTPRESS SYSTEMS
LIMITED LICENSOR(S) DOES NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS
REGARDING THE USE OR THE RESULTS OF THE USE OF THE SOFTWARE IN TERMS OF ITS
CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS OR OTHERWISE. THE ENTIRE RISK
AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU. THE
EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE
EXCLUSION MAY NOT APPLY TO YOU.
IN NO EVENT WILL SOFTPRESS SYSTEMS LIMITED OR ITS DEVELOPERS, DIRECTORS,
OFFICERS, EMPLOYEES OR AFFILIATES BE LIABLE TO YOU FOR ANY CONSEQUENTIAL,
INCIDENTAL, OR INDIRECT DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, AND THE LIKE)
ARISING OUT OF THE USE OR INABILITY TO USE THE SOFTWARE OR ACCOMPANYING
WRITTEN MATERIALS, EVEN IF SOFTPRESS OR AN AUTHORISED SOFTPRESS REPRESENTATIVE
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS MAY NOT APPLY TO
YOU.

