
Actions Tech. Note 8
Draft 1.0

Generating JavaScript
Many interesting Freeway Actions generate JavaScript. They insert code JavaScript into the
HTML. This JavaScript will then provide interesting additional behaviours to the web-page. The
oldest example of this is probably the Rollover, where a piece of JavaScript is added to the page
to change an image when you move your mouse over a link. This tech note discusses some of
the issues you will need to consider when making Actions that generate JavaScript.

JavaScript is added to the page in one of two ways. It i.e. either added to the page in the HTML
between a <script></script>  tag or it is added to an event handler. An example of this is the
onMouseOver  attribute of a link tag.

Adding JavaScript Between <script></script>  Tags.

Generally the main body of JavaScript on a page is added using script tags. So, for example, if
you wanted to add a function "foobar" to your page you would want to add some code like this:

<script language="javascript"><!--

function foobar()
{

alert("Hi");
}

//-->
</script>

You generally would want to add this between the <head></head>  of the page. So you could do
it by just finding the head  tag and add the text using fwAddRaw and friends. This would work -
but it would not take account of the situation where there is already <script></script> on the
page. So you could start by looking for a script tag and where it not there then add one. This
would also work - but if you wanted compatibility with old browsers you would than have to
find the special enclosing comment block (<!--   //--> ) and add your JavaScript in there. The
whole thing gets quite complex very quickly.

Adding JavaScript within a <script></script>  that is correctly commented for old browsers is
something that the Actions writer will very commonly want to do. To ease the pain of this
Freeway provides a method fwAddJavaScript  to do all this. This method will find or create a
<script></script>  of the correct language, with comment block. So any time you need to add
code between the <head></head>  all you need do is find the head  tag and call fwAddJavaScript .

So the code required to create our foobar  fragment above is something like this:

<page-action name="foobar">
<action-javascript>

function fwAfterEndBody()
{

// find the head tag



var headTag = fwDocument.fwTags.fwFind("head");

if (headTag )
{

// get a JavaScript script enclosure
var javaScript = headTag.fwAddJavaScript();

// generate the function
javaScript.fwAddRawln('function foobar()');
javaScript.fwAddRawln('{');
javaScript.fwAddRawln('    alert("Hi");');
javaScript.fwAddRawln('}');

}
}

</action-javascript>
</page-action>

JavaScript Versions

JavaScript is available in different versions on different browsers. Authors of JavaScript may
require a certain version of JavaScript to be available. This is specified in HTML by specifying
the version of JavaScript that you require. So if you wanted your JavaScript only to be available
to browsers that can support JavaScript 1.2 you would specify this in the language  attribute of
the script  tag:

<script language="javascript1.2"><!--

function foobar()
{

alert("Hi");
}

//-->
</script>

The fwAddJavaScript  method will handle this for you. It has an optional parameters that is the
value of language tag that you require. If you do not specify a language tag you will get
"javascript"  as the default, otherwise you will get what you ask for. So if you want a
"javascript1.2"  enclosure you would ask for it like this:

var javaScript = headTag.fwAddJavaScript('"javscript1.2"');

NOTE: Notice that the call includes the quotes in the tag - you have to pass in the value of the
tag which includes quotes.

More Readable JavaScript

Depending on the sort of person you are and the sort of thing you are doing you may want to
indent your JavaScript. You can harness the indentation that is used by Freeway's code
generation should you want to. This indentation will only appear when your Freeway
preferences are set to "More Readable". This indentation is managed by the fwIndent  and
fwOutdent  methods. You can also add line-endings in such a way that the line-endings will only
appear when you to do this call fwAddRawOpt  rather than fwAddRawln . The fwAddRawln  method
will only add a line ending when "More Readable" code is being generated.

Using these methods your code would look like this.



function fwAfterEndBody()
{

// find the head tag
var headTag = fwDocument.fwTags.fwFind("head");

if (headTag )
{

// get a JavaScript script enclosure
var javaScript = headTag.fwAddJavaScript();

// generate the function
javaScript.fwAddRawOpt('function foobar()');
javaScript.fwAddRawOpt('{');
javaScript.fwIndent();
javaScript.fwAddRawOpt('alert("Hi");');
javaScript.fwOutdent();
javaScript.fwAddRawOpt('}');

}
}

With "More Readable" turned off it would generate the following (more compact) code.

<script language="javascript"><!--
function foobar(){alert("Hi");}
//-->
</script>

NOTE: If you use fwAddRawOpt  to generate your JavaScript be sure to test it in the browser with
"More Readable" turned off before you release your action. This is very important as line breaks
have syntactical properties and code that is, say missing a semicolon may work fine in "More
Readable" form but generate JavaScript errors otherwise.

Using Markup

Adding anything more than a small function using fwAddRawln  and friends is slow. You have to
remember to quote things correctly, escape your quotes as well as typing a lot of things which
are required but feel like garbage. The whole thing takes a lot of time. Then when you look in
the browser and have to come back to your Action and correct the code it all becomes very
tricky.

The alternative way of doing is to use custom  markup in your action. You can put any markup
you require in a custom  markup thus

<action-markup custom name="foobar">
function foobar()
{

alert("Hi");
}
</action-markup>

Custom markup is not automatically included in the output and you refer to it in your
JavaScript by name e.g.

alert(fwMarkups["foobar");

NOTE: remember to include the custom  or it will be included in the output which is almost
certainly what you don't want.



Custom markup is designed to allow you to enter text, for use within an action, without a lot of
pain. Using this technique your action would look like this.

<page-action name="foobar">

<action-markup custom name="foobar">

function foobar()
{

alert("Hi");
}

</action-markup>

<action-javascript>

function fwAfterEndBody()
{

// find the head tag
var headTag = fwDocument.fwTags.fwFind("head");

if (headTag )
{

// get a JavaScript script enclosure
var javaScript = headTag.fwAddJavaScript();

// add the foobar code
javaScript.fwAddRawOpt(fwMarkups["foobar"]);

}
}

</action-javascript>
</page-action>

If you have simple parameter substitutions that you need in your markup you can use the
fwSubstitute  method on your markup. For some sorts of actions you may find this a very easy
way of way to put parameters in your functions. The following action customises the foobar
method with text drawn from a parameter.

<item-action name="foobar">
<action-text name="greeting" default="Hi!">

<action-markup custom name="foobar">

function foobar()
{

alert("&greeting;");
}

</action-markup>

<action-javascript>

function fwAfterEndBody()
{

// find the head tag
var headTag = fwDocument.fwTags.fwFind("head");

if (headTag )
{

// get a JavaScript script enclosure



var javaScript = headTag.fwAddJavaScript();

// add the foobar code substituting the parameters
// first
javaScript.fwAddRawOpt(fwSubstitute(fwMarkups["foobar"]));

}
}

</action-javascript>
</item-action>

Adding Common Code

It is common for more than one action to be applied to a page. These actions may well want use
common functions. If you are in the rollover business you may well have written an image-
swap function. You probably do not want to replicate this function for every rollover on the
page - it would be better to add it just the once and then have all the interested actions use it.

The issue here is who should add the code and how should the other actions 'know' not to add
the code. There are many ways that you could do this by the approach we have taken (in our
actions) for this issue is that every action should try and add the code if no other action has
added it already. The way that we do this is to set a property on the page with the same name
as the function when have added the function. The following code fragment handles this:

// get a JavaScript script enclosure
var javaScript = headTag.fwAddJavaScript();

// has the foobar code NOT been added?
if (!fwPage.foobar)
{

// add the foobar code
javaScript.fwAddRawOpt(fwMarkups["foobar"]);

// mark the page so no other action
// will add it
fwPage.foobar = true

}

Adding code like this based on a custom markup item is very common. If you want to do this
you might consider pasting the following method into your action as it handles it all for you. It
will check and add a property to the page with the same name as your markup.

// This appends a piece of JavaScript stored in /action-markup/ to a specific tag
function AppendJavaScript(tag, markup, script)
{

// Append a piece of markup if it is not already defined
if (tag && !fwPage[markup])
{

var javascript = (script) ? tag.fwAddJavaScript('"'+script+'"')
: tag.fwAddJavaScript();

javascript.fwAddRawOpt(fwMarkups[markup]);
fwPage[markup] = true;

}
}

If you choose to use this method adding JavaScript from mark-up is very easy - just call
AppendJavaScript  with the tag and the name of the mark-up and the rest is handled for you.
The action's body looks like this.



function fwAfterEndBody()
{

// find the head tag
var headTag = fwDocument.fwTags.fwFind("head");
AppendJavaScript(headTag, "foobar");

}

If you want to add JavaScript 1.2 you can do this as well, just specify the tag contents (without
quotes to make life easier) and it will happen

AppendJavaScript(headTag, "foobar", "javascript1.2");

It may well be that you have different actions that share the same code. You can use the same
technique but you will obviously have to duplicate the code that you want as markup in each of
the actions. If you do this you will have to be a little careful that all the code is the same
otherwise you can have unexpected problems.

Generating Code from more than one Action

You may well have actions that generate code together. You might have a situation where a
number of actions "club together" to generate a single method. An example of this is a single
method that, when called, will preload all the images. It may be that you want code like  this
generated:

function Foobar()
{

FoobarPreload("Resources/graphic1.gif");
FoobarPreload("Resources/graphic2.gif");
FoobarPreload("Resources/graphic3.gif");
FoobarPreload("Resources/graphic4.gif");

}

Where each call to FoobarPreload  originates from a different Action.

A way that you can achieve this is to divide the task into two sections

• Acquiring details of all the things that need to be preloaded
• generate the code

Each action can be responsible for submitting it's own details of what needs to be added, then
when all have been added one of them can generate the function. We can then split the task
over two separate phases of the publishing process. At fwBeforeStartBody  each action can add
whatever it wants to be preloaded to a list. Then by the time we get to fwBeforeEndBody  we can
guarantee that everyone who wants to has added to this and the first action that is about can
generate the code and clear the list so no other actions will try and generate the magical foobar
function.

Here is a simple example:

<item-action name="foobar">
<action-file name="preload"/>

<action-javascript>

function fwBeforeEndBody()
{

var preloadFile = fwParameters["preload"];



// check we have a file
if (!preloadFile.fwHasFile)

return;

// is there a list called 'foobar' on the page - if not
// create it.
if (!fwPage.foobar)

fwPage.foobar = new Array;

// add the file to the list
fwPage.foobar.push(preloadFile);

}

function fwAfterEndBody()
{

// find the head tag
var headTag = fwDocument.fwTags.fwFind("head");
if (!headTag)

return;

// the page has a foobar list this means that nobody
// has made the foobar function yet - so let's do it.
if (fwPage.foobar)
{

// get a JavaScript script enclosure
var javaScript = headTag.fwAddJavaScript();

// generate the function foobar
javaScript.fwAddRawOpt('function foobar()');
javaScript.fwAddRawOpt('{');
javaScript.fwIndent();

for (var i in fwPage.foobar)
javaScript.fwAddRawOpt('FoobarPreload(\'', fwPage.foobar[i], '\');');

javaScript.fwOutdent();
javaScript.fwAddRawOpt('}');

// clear the foobar list so no other action
// will try and generate the foobar function
fwPage.foobar = null;

}
}

</action-javascript>
</item-action>

Adding JavaScript to Attributes

It is common to want to add JavaScript to attributes. HTML supports a number of event
handlers to which it is possible to add JavaScript. For example you may well want to add a
script the executes when your page is fully loaded. This script might, for example, call the code
that is required to preload images for your rollovers.

So for this example what you would want is end up with the following body tag with an onload
attribute set appropriately.

<body bgcolor="#ffffff" onload="foobar();">

If Freeway you can quite easily find the body tag and set it.



var bodyTag = fwDocument.fwTags.fwFind("body");
bodyTag.onload = '"foobar()"';

This will work fine but - if anyone else had set the onload  attribute whenever they have there
will be lost. Another (better) plan would be to look in the attribute - see what was there and
append the method call to it (respecting the quotes). the situation is further complicated by the
fact that someone could have added code like return true to the attribute. This is something that
has to appear at the end of the attribute.

Freeway supplies the fwAddJToTag  method that will correctly append to this attribute and will
respect the code fragments return true  and return false .

So the code:

var bodyTag = fwDocument.fwTags.fwFind("body");
bodyTag.fwAddJToTag('onload','foobar()');

will (if the attribute has not been set) would result in

onload="foobar()"

if you where to call fwAddJToTag  twice

var bodyTag = fwDocument.fwTags.fwFind("body");
bodyTag.fwAddJToTag('onload','foobar1()');
bodyTag.fwAddJToTag('onload','foobar2()');

you would get

onload="foobar()1;foobar()2"

Notice that the fwAddJToTag  function will automatically append a ";" between the strings that
you pass it. It is sensitive to statements that have a return true or return false so

bodyTag.fwAddJToTag("'onload'", 'foobar1()');
bodyTag.fwAddJToTag("'onload'", 'return true');
bodyTag.fwAddJToTag("'onload'", 'foobar2()');

will result in

onload="'foobar1();'foobar2();return true"


