
1

Writing Freeway Actions:

1. Basic Actions

Acknowledgements

We gratefully acknowledge Tim Plumb’s contribution to the preparation of
this document. You may visit Tim’s independent Freeway Actions Web site
at

www.freewayactions.com

Here you’ll find a circus of Actions that are both useful and fun. The Actions
are available as both shareware and freeware. Additional resources are
detailed in the ‘Resources’ section on page 45.

The Purpose of this Document

This purpose of this document is to enable you, a user of Freeway, to write
your own Actions from scratch. As you probably know, Freeway Actions
enable you to augment your Web pages with a wealth of available features.
If you haven’t yet used Actions with Freeway, we recommend that you do!
Once you’ve used pre-existing Actions, the next step is to write your own.

For a comprehensive introduction to using Freeway Actions, take a look at
the ‘Actions’ chapter in the Freeway User Guide. We won’t go into detail
here about using Actions, but in order to show you just how simple it is to
use Actions, we’ll introduce you to what they are and how to use them.

Then we’ll take an in-depth look at how Actions work, and guide you
through writing and implementing your own.

The Benefits of using Actions

From time to time it may be necessary to supplement, extent or modify the
HTML output from Freeway. By using a Freeway Action, it is possible to
make Freeway insert script into all the required places of the HTML output

2

using instructions held in one text file. The Action’s script allows the author
to specify exactly where in the HTML output any HTML script (or another
kind of script – JavaScript) should be inserted.

This helps the author as the Action is held in a single location. Because the
Action inserts script into a number of locations, there’s no need for this to
be done manually. If the script needs updating, the author edits the Action
text file, and republishes the documents that use the Action.

What are Actions?

Actions are stored in text files
A Freeway Action is stored in a text file. It comprises the following
components:

• HTML or JavaScript to be added to the HTML which Freeway
outputs when you preview or publish your Freeway document.

• ‘Action script’ that determines where the HTML or JavaScript to be
added is inserted.

• A definition of the variables used when the Action is executed. If an
Action asks you (via the Actions palette) to input various
parameters that determine its effects, these parameters are stored in
variables.

• Script that controls how options appear in the Actions palette.

As you design your Web pages in Freeway, you call upon the Action in
certain areas of your pages.

Actions are bounded by specific tags
In the Action script, the Action is bounded by <action-html> and </action-
html> tags. The script to be added to the output lies between these two
(outer) tags. If segments of this script have to be inserted into different
parts of the HTML output by Freeway, they are enclosed within other
<action-html> and </action-html> tags. The script contains some
identifiers – script which defines where in Freeway’s output HTML the
Action is to insert additional script. For example, the following script

3

<action-html before-end-head> Some Text </action-html>

inserts the words ‘Some Text’ just before the end of the header of the
HTML file as it is published.

The <action-html> tag includes the name of the Action. This appears in the
Insert or Item options of the Main Menu. This tag is followed by script that
displays options on the Actions palette.

Action script is similar to HTML—for example, tags are enclosed in angle
brackets.

Using Actions

For comprehensive details on how to use Actions, read the ‘Actions’
chapter in the Freeway User Guide. Here we’ll offer the most basic
instructions:

Copying Actions to the Freeway Actions folder
First copy the Action file into your ‘Freeway Actions’ folder, or a subfolder of
this. For example, the Action Slave Image is located in the Slave
subfolder, which holds all Actions of this type (Actions which invoke a
change in an object when another object is changed).

We should distinguish here between two processes:

• Adding Actions to the ‘Freeway Actions’ folder (or subfolders) where
Freeway can access them.

• Referring to Actions from within your Freeway document, which
needs be done whenever the Action’s effects are to be applied.

You may load a Freeway document into Freeway running on a computer
other than that used to create the document, which does not have a copy of
those Actions that are referred to in that document. If you make changes to
the document then preview or publish it, the Actions will work, because the
Freeway document automatically makes and keeps a copy of any Actions it
refers to.

Applying Actions to your document
There are three categories of Actions:

4

1. Item Actions, applied to an item on the page via the Actions entry on
the Item drop-down menu on the Main Menu (Item > Actions).

2. Free-standing Actions, applied to the page via the Sketch Action
tool in the toolbox.

3. Page Actions, applied through Page > Actions.

Click the Action to be applied from the list of Actions presented. The name
of the Action is displayed in the top corner of the item (1) , sketched-out
Action (2), or page (3).

Basic Actions and Advanced Actions

We recommend that you try writing basic Actions similar to those covered
in this document before moving on to the advanced Actions covered in the
second part of this document: ‘Writing Freeway Actions: 2. Advanced
Actions’. Once you’re familiar with how the basic Actions presented in this
document work, and have tried and implemented some of your own basic
Actions, then you may wish to attempt to write advanced Actions that take
full advantage of Freeway 3’s Action capabilities. There are important
differences in the way basic and advanced Actions modify pages in your
document before they are output as HTML files, which are summarised
below.

How Actions modify HTML

When a document is published or previewed, Freeway generates an HTML
file for every page in your document. Once the HTML has been generated
for a page by Freeway, but before it is output as an HTML file, the Actions
that you have added to that page are applied to it. After all the Actions
referred to in the page have been applied to it, the HTML file is generated.

When you come to work with advanced Actions, you’ll appreciate that there
are more stages to the process of generating an HTML file from a page in
the document. In Freeway 3, a page in a document is converted into a
hierarchical list of tags – a tag tree. The tag tree then interacts with any
Actions that are referred to on the page. When all the Actions referred to on
the page have been applied to the tag tree, an HTML file is generated from
the tag tree. Don’t worry about exactly what a tag tree is, just be aware that

5

it is an intermediate form of a page in your document before it is compiled
into an HTML file.

Using more than one Action on an item or page

A basic Action adds HTML script to the HTML for a page after the HTML for
that page has been generated by Freeway. Once this has been done, it
may be difficult for another basic Action to modify the already-modified
HTML script. This is because the Action simply looks for tags and inserts
script – it is not ‘aware’ that the HTML text has already been altered.
Because of this there are limitations on the number of Actions that may be
run for a given object. Most commonly, only one Action may be applied to
one object. Similarly in the case of page Actions, only one Action may be
applied to any given page with complete confidence.

Advanced Actions are programs (written in JavaScript). The tag tree is the
input for the program. A modifications to the tag tree represent the
program’s output. The tag tree may be modified again and again by other
advanced Actions. Once the tag tree has been modified by all the Actions
referred to on the page, HTML is generated from it. Unlike basic Actions,
there is no limitation on the number of different item Actions that may be
referred to by a particular item, and similarly one page may refer to more
than one page Action.

Creating a simple basic Action

Saving your new Actions
When you write a basic Action, you create a text file containing Action script
and save it in the "Freeway Actions" folder. Once in this folder, Freeway
can see it, and offer the Action name as an option on one of the Action
menus. The menu the Action name is shown on depends upon which type
of Action it is. Freeway knows this from the Action code – you do not need
to specify if an Action that you have written is an item Action, a free-
standing Action or a page Action. In summary:

• Item Actions: Go to Item > Actions.

• Free-standing Actions: Click-and-drag with the Sketch Action tool in
the toolbox.

6

• Page Actions: Go to Page > Actions.

Freeway checks the Freeway Actions folder (and subfolders) whenever it is
launched or whenever it is switched into from another application. Note that
if an existing Action in the Freeway Actions folder or subfolders has been
modified, then the modified Action is applied to the document the next time
it is previewed or compiled.

Writing your first Action
This is the script for a basic free-standing Action. When the page it is
applied to is previewed, it shows the words "Hello world" on the page where
the Action was applied:

<action name="Print Hello world">

<P>Hello World</P>

</action>

1. Launch a text editor, such as Simple Text or BB Edit, and start a new
file. Enter the text above – and no other text.

2. Save the file in the Freeway Actions folder as “My Sample Actions”
(without a file extension). Although you can call your Action file
anything you like it’s always a good idea to give it the same (or at least
a similar) name to the Action itself.

3. Either launch Freeway, or switch into Freeway from the text editor –
note that you don't need to close “My Sample Actions” in the text editor
in order to use it in Freeway, although you need to save any changes
for them to be applied with the Action.

4. Start a new Freeway document (use the default size offered).

5. Move the pointer over the Freeway Action tool in the Tools palette and
click-and-hold the mouse button. A pop-up menu appears listing the
free-standing Actions available.

6. Click over the item "Print Hello world" from the pop-up menu.

7. Position the pointer anywhere on the page, and drag out a rectangle
(as you would with the Graphic Item tool). On releasing the mouse
button an ‘Action square’ is drawn, identified by the Freeway symbol in
the top-right of the square.

7

8. Preview the page in a browser. You should see the words "Hello world"
shown in the browser window, at the position you drew the Action item
on the page.

9. Next, switch back into your text editor and change the text between the
<P> and </P> tags, save the text file, switch back into Freeway and
preview the page again. You should see the new text displayed on the
page.

You have just created and used your first Freeway Action.

Adding code to different locations
Here's a more sophisticated Action. When your Freeway document is
previewed or published it inserts the author's name at the head of the
HTML script as a meta tag, and adds the text "Copyright (c) 2002, Your
name here" where you drew Action item on the page.

1. In the text file “My Sample Actions”, insert a couple of blank lines
beneath the text you added for the previous Action, then type or copy
and paste the text below into it.

<action name="Sign the page">

<action-html before-end-head>

<META NAME="Author" CONTENT="Your name here">

</action-html>

<P>Copyright (c) 200X Your name here

</P>

</action>

2. Save “My Sample Actions”.

3. Launch Freeway, or switch back into Freeway from the text editor.

4. Click-and-hold on the Freeway Action tool in the Tools palette until the
pop-up menu appears.

5. Select the menu item Sign the page.

6. Click-and-drag an Action box anywhere on the page.

7. Preview the page. You should see the words "Copyright (c) 200X Your
name here" (substituted with the appropriate information) appear on the
page.

8

8. View the source code in your browser: In Explorer go to View >
Source; in Communicator go to View > Page Source.

You should be able to locate this text:

<META NAME="Author" CONTENT="Your name here">

You can make the code easier to read here: In Freeway, go to File >
Preferences. In the ‘Document Preferences’ dialog, click the Output
icon in the left-hand panel. In the Output cluster (see below), set HTML
code to More readable, and click OK.

To be of use this Action needs to be placed on the master page of your
document.

Note that when you need to change the copyright message, the formatting,
or the meta tag, you simply edit the Action text file, then open and
re-publish the documents that use it.

9

Using pre-defined properties
Freeway offers a selection of pre-defined properties for use in Actions.
When the Action script refers to a property, the value of that property is
inserted into the page when it is previewed or published. These properties
include:

• width: The width of the item (to which the Action is applied), in
points.

• height: The height of the item (to which the Action is applied), in
points.

• date: the current date, in the format set up in the Control Panel.
• time: the current time, in the format set up in the Control Panel.
• title: the title of the item (to which the Action is applied).
• link: if the item is linked, this provides the URL (address) of the

link.
• pagetitle: the title of the page as defined between the <TITLE>

and </TITLE> tags.
• pagefile: the name of the file that holds the page (to which the

Action is applied).

To call the value of a property in the Action code, enter the variable name
in the form:
&variablename;

The above piece of code is entirely replaced by the contents of the variable
when your Freeway document is published.

Here's a simple example of a couple of the built in variables in use:

<action name="Tell me about the page">

<P><H3>Hello! This page is titled <I>"&_pagetitle;"</I>

and was last published at &_time; on &_date;. </H3></P>

</action>

1. Add the script as shown above to the text file. Add a couple of blank
lines between this Action and the previous Action, ‘Adding code to
different locations’.

2. Save the changes to the text file.

3. Launch Freeway or switch back into Freeway.

4. Click-and-hold over the Freeway Action tool in the Tools palette until
the pop-up menu appears.

10

5. Choose the item Tell me about the page from the menu.

6. Draw a box in Freeway using this Action.

7. Preview the page in a browser.

You should see a sentence that describes the page. This technique could
be added to the previous example to create an Action which added the
copyright information as well as the date and time the page was last
published by Freeway.

Adding user input for Actions via Freeway’s Actions palette
Using the Action from ‘Adding code to different locations’ (above), we're
now going to examine how Actions can ask for user input via the Actions
palette – i.e. at object creation time. We'll create two text fields in the
Actions palette which allow the user to enter the name to be added for the
Author meta tag, and the year and name for the copyright text displayed.
Variables representing these fields are added to the output code, and will
be substituted by the user's input when the page is published.

When you add an <action-text> tag, an editable text field with the given
name appears in the Actions palette, and the contents of the field are
represented by a variable with the same name.

Here's the Action:

<action name="Sign the page - 2">

<action-text name="Author">

<action-text name="Year">

<action-html before-end-head>

<META NAME="Author" CONTENT="&Author;">

</action-html>

<P>Copyright (c) &Year;

&Author;</P>

</action>

1. Add the code as shown above to the text file leaving another couple of
blank lines between this code and that of the previous Action.

2. Save the changes to the text file.

3. Launch or switch back into Freeway.

11

4. Click-and-hold over the Freeway Action tool in the Tools palette until
the pop-up menu appears.

5. Choose the item "Sign the page - 2" from the menu.

6. Draw a box in Freeway using this Action, and keep it selected.

7. In the Actions palette you'll see the two text fields, Author and Year.

8. Type your name and a year into the two fields.

9. Preview the page in a browser.

You should see the year and name you entered displayed in the
browser window, where the box was drawn.

10. Now view the source of the page in the browser, and look in the header
of the HTML file—you should see the meta tag as defined in the
<action-html before-end-head> section of the Action, but with the name
you specified in the Author text field.

There are various ways of giving the user options—the default is the
editable text field as used in this example, but you can also create pop-up
menus with your own items in them, or create fields that allow the user to
browse for files, and enter an appropriate file into the field.

12

Adding pop-ups and browse options
In this example, we're going to see how we could use an Action to allow the
user to specify a QuickTime movie for output, and set up various options for
it:

<action name="QuickTime">

<action-file name="Movie File">

<value type="MooV">

</action-file>

<action-pop-up name="Loop">

<value name="True">

<value name="False" default>

</action-pop-up>

<action-pop-up name="Auto Play">

<value name="True" default>

<value name="False">

</action-pop-up>

<action-pop-up name="Controller">

<value name="True">

<value name="False">

</action-pop-up>

<embed src="&Movie File;" width="&_width;"

height="&_height;" loop="&Loop;" autoplay="&Auto Play;"

controller="&Controller;">

</action>

There are two types of fields available for the user to enter data: file and
pop-up.

The file option creates a pop-up menu with two choices on it, "None" and
"Select...". Choosing Select displays a dialog with which the user can
locate and choose a file. By default, this option would allow the user to
choose any type of file. It is possible to restrict the available choices by
specifying the Macintosh file types which should be displayed in the file
selector dialog—in the above example, the file type of ‘MooV’ is specified,
and only files with this type will be displayed.

The pop-up option creates a pop-up menu with the choices defined in the
value tags between the <action-popup> and </action-popup> tags. Each
choice is defined by its own value tag and can (optionally) contain the
‘default’ attribute. Menu items marked in this fashion will, as the name
suggests, display the default item on the menu when shown on the Actions
pallet. Only one item per menu should be defined in this way. Without a

13

default attribute the menu will display the first item defined in the list of
values.

In the above example, the built-in width and height variables have been
used to set the output dimensions of the QuickTime movie window to the
same as the width and height of the object on the page.

Summary
In the previous examples, we've seen how Actions offer a convenient and
powerful way to add custom HTML or scripting to pages created in
Freeway. Because they are text files, it is easy to customize and
experiment with them, and with a basic knowledge of HTML or JavaScript
there should be no problems creating your own real-world solutions.

Note
You may use basic Actions to add JavaScript to Freeway’s HTML output – even though
basic Actions are not written in JavaScript and are not programs themselves.

Some References

To finish this introduction, here is a list of the tags which can be used in
Actions (optional tag parameters are shown between the square brackets):

<action name=string [title=string] [region=regioncode

title=string …] [preview-type=checkbox | radio | button | textfield

| list | textarea | text] [preview-text=string] [width=number]

[height=number] [generates-form] [generates-link] [requires-form]>

</action>

<item-action name=string [title=string] [region=regioncode

title=string …] [generates-form] [generates-link] [requires-form]>

</item-action>

<page-action name=string [title=string] [region=regioncode

title=string …] [generates-form] [generates-link] [requires-form]>

</page-action>

name:
The name of the Action. If the name contains spaces the name needs to be
enclosed in quotes.

14

title:
The title of the Action. If this is provided, it will be displayed within Freeway
in place of the name. It can also be accompanied by a region code, to allow
the setting of different titles for different localized versions of Freeway (see
region below).

region:
A region code to accompany a title, which allows a different title to be
displayed within the Freeway interface according to the localized version of
Freeway which is running. A list of region codes is provided at the end of
this section

preview-type:
Options are checkbox, radio, button, textfield, list, textarea and text
(default).

preview-text:
For use with preview-type=text. This specifies the text to appear on the
layout item within Freeway. This can include variables (for example

preview-text=&_title
displays the title of the item on the Action).

width/height:
Width and height for the item within Freeway (always an integer).

generates-form:
The Action outputs a <form> tag. Freeway’s automatic generation of the
<form> tag (when there are form controls on the page) is suppressed if an
Action is already handling it.

generates-link:
The Action outputs the <a> (link) tag. This is used to prevent Freeway from
generating a second link tag if the Action already handles it internally.

requires-form:
The Action requires a <form> tag to be generated elsewhere. This would be
used to ensure that Freeway automatically generates its default <form> tag
when this Action is used, in the case when this Action will output a form
element.

Examples:

<action name="my submit button" preview-type="button"

height=20 generates-form>

15

<action name="my name" preview-type="text" preview-

text="fred">

version:
This is a decimal number which will be displayed in the Actions palette (for
example: 1.0)

<action-version version=decimal>

[Some text]

</action-version><action-text name=string [title=string]

[region=regioncode title=string...] [default=string]

[display] [required] [var] [script=scriptcode]>

name:
Name of this text argument.

title:
Title of the argument. If this is provided, it will be displayed within Freeway
in place of the name. It can also be accompanied by a region code, to allow
the setting of different titles for different localized versions of Freeway (see
‘region’ below).

region:
A region code to accompany a title, which allows a different title to be
displayed within the Freeway interface according to the localized version of
Freeway which is running. A list of region codes are provided at the end of
this document.

default:
The default value for this argument.

display:
Whether to display the value of this argument on the Action item on the
Freeway page.

required:
This argument must be filled in. If not, a warning will be flagged when
publishing.

var:
This argument is an internal field only – it will not appear in the Freeway
interface.

16

script:
This can be used the specify the Macintosh script code (or keyboard) which
should be used when typing into this field in the Actions palette. For
example, if you want this field to always accept roman text even on a
Japanese page, you would set the script to US. The default is for text to be
entered according to the encoding of the page. A list of script codes is
given below.

Example:

<action-text name="copyright" default="copyright Bilbo

Baggins 2002" display>

<action-number name=string [title=string] [region=regioncode

title=string...] [default=number] [minimum=number]

[maximum=number] [display] [required] [var]/>

minimum:
minimum value allowed.

maximum:
maximum value allowed.

Other parameters: see <action-text> above

Example:

<action-number name="counter" minimum=1 maximum=100>

<action-file name=string [title=string]

[region=regioncode title=string...] [display]

[required] [var] [keepwithhtml]>

[<value type=file-type>]

</action-file>

keepwithhtml:
This parameter specifies that any non-HTML files that are generated on
publishing are placed in the same folder as the HTML files, rather than the
Resources folder, regardless of the choice made in the Document Setup
dialog for the site. This is useful in the case of Java Applets where they will
not function if they are placed in a different folder.

The <value type=file-type> settings allow you to specify a list of possible
Macintosh file types to display in the file selector when choosing the file.
For example, to specify that only GIF, JPEG and PNG files should be
displayed in the file selector, use:

17

<value type=GIFf> <value type=JPEG> <value type=PNGf>.

Up to 4 types can be specified. If no types are specified then any file will be
permitted.

<action-image name=string [title=string]

[region=regioncode title=string...] [display]

[required] [var] [keepwithhtml]>

[<value type=file-type>]

</action-image>

This is similar to <action-file>, but in this case the file can also be
generated using the Graphic Parameters view in the Actions palette,
using graphic items on the Freeway page.

<action-pop-up name=string [title=string]

[region=regioncode title=string...] [display]

[required] [var]>

<value name=string [value=string] [default]>

</action-pop-up>

default:
This is the default value of the pop-up.

The <value name=...> settings specify the items to be displayed in the pop-
up within Freeway. The name appears in the pop-up. The value (if
specified) is what will be substituted in the code where this parameter is
used. If no value is specified, the name will be used. The value can contain
other variables. They will be expanded before substitution occurs. In the
simple example below, one parameter is used to specify a link, and a pop-
up is used to determine whether or not to use that link.

<action-url name=mylink>

<action-pop-up name=uselink>

<value name=yes value=''

<value name=no value="">

</action-pop-up>

</action-url>

<action-url name=string [title=string] [region=regioncode

title=string...] [display] [required] [var]>

This will generate a pop-up menu in the Actions palette, allowing a link to
be set – either an internal or external hyperlink.

18

<action-checkbox name=string [title=string]

[region=regioncode title=string...] [display]

[required] [var]>

</action-checkbox>

<action-button name=string [title=string]

[region=regioncode title=string...]

[onclick=function()] [display]>

</action-button>

onclick:
A JavaScript function to execute when the button is clicked. This function
must have been defined in an <action-javascript> tag somewhere within the
Action file.

<action-color name=string [title=string]

[region=regioncode title=string...]

[display]>

</action-color>

This generates a color pop-up in the Actions palette, to allow selection
from the custom or Internet colors, or creating a new color.

<action-label name=string [title=string]

[region=regioncode title=string...]>

</action-label>

This doesn't actually allow user input, but displays text within the Actions
palette.

<action! [any-text]/>

The contents of this are ignored by Freeway. It may be used to divide the
controls that are shown in the Actions palette.

Example:

<action! This Action was written by Joe Bloggs/>

<action-html [position]> … </action-html>

Position can be one of the following:

19

before-start-html after-start-html

before-end-html after-end-html

before-start-head after-start-head

before-end-head after-end-head

before-start-noframes after-start-noframes

before-end-noframes after-end-noframes

before-start-body after-start-body

before-end-body after-end-body

before-start-table after-start-table

before-end-table after-end-table

before-start-form after-start-form

before-end-form after-end-form

once-before-start-html once-after-start-html

once-before-start-head once-after-start-head

once-before-end-head once-after-end-head

once-before-start-noframes once-after-start-noframes

once-before-start-body once-after-start-body

once-before-end-body once-after-end-body

once-before-end-noframes once-after-end-noframes

once-before-end-html once-after-end-html

once-before-start-table once-after-start-table

once-before-end-table once-after-end-table

once-before-start-form once-after-start-form

once-before-end-form once-after-end-form

custom
This code is not inserted automatically, but can be accessed using
Freeway's JavaScript language to insert the code as required.

<action-javascript>
This is used to enclose JavaScript code used in the Action. Writing Actions
using JavaScript is discussed in a separate document.

Built-in variables
The following built-in arguments can be used in Actions, and will be
replaced with the relevant information on output:

top
Top coordinate of item on page.

left
Left coordinate of item on page.

20

height
Height of the item in Freeway.

width
Width of the item in Freeway.

path
Comma separated list of all coordinates of this item. This can be used as
an image map.

textarea.rows
Number of rows occupied by textarea item.

textarea.cols
Number of columns occupied by textarea item.

textfield.size
Number of characters this textfield can display.

select.size
Number of lines to display for this menu/list item.

date
Date the page is published.

time
Time the page is published.

title
Title of the item in Freeway.

layer
Layer name of this item.

link
The link applied to this item (e.g. http://www.softpress.com).

link.href
The link applied to this item including "href=" or "nohref" and all extended
attributes applied to the link.

link.target
The target applied to this link.

link.extended
All the extended attributes applied to this link.

21

href
Full HTML for link (e.g. <a href="http://www.softpress.com"
target="_blank">)

page.title
Title of the page.

page.file
HTML filename of the page.

cleargif
Returns the relative path of the "_clear.gif" file.

action.title
The title of the Action.

action.name
The name of the Action.

r
Insert new line.

gt
Output “>” (similarly for other HTML escape characters).

The following options apply to the relevant multimedia types supported by
Freeway, when an Action is applied (for example the QuickTime and Flash
Extras).

quicktime.autoplay

quicktime.controller

quicktime.loop

flash.loop

flash.quality

The following can only be used within <action-html> in an <item-action>
applied to a graphic item in Freeway:

filename
Image file name.

alttext
Alt text assigned to this image.

22

mapname
The map name.

Region codes for Action region setting

The region codes used for providing localized names for Actions and Action
parameters are the standard Macintosh region codes. The localized name
will be used when a localized version of Freeway is running – currently that
only applies to the Japanese version, but here is a short list of possible
values:

Language Code Language Code

US English 0 Hebrew 13

French 1 Japanese 14

English 2 Australian 15

German 3 Arabic 16

Italian 4 Finnish 17

Dutch 5 Swiss French 18

Flemish 6 Swiss German 19

Swedish 7 Greek 20

Spanish 8 Icelandic 21

Danish 9 Maltese 22

Portuguese 10 Cyprian 23

French Canadian 11 Turkish 24

Norwegian 12

23

Script codes for Action script setting
The script codes used in Freeway are standard Macintosh script codes.
Here is a short list of possible values:

Script Code

Roman 0

Japanese 1

Traditional Chinese 2

Korean 3

Arabic 4

Hebrew 5

Greek 6

Cyrillic 7

Simplified Chinese 8

Central European Roman 29

Turkish 35

24

Writing Freeway Actions:

2. Advanced Actions for Freeway 3

So far we have introduced the concept of Actions as pieces of HTML code
that are inserted into the HTML that is output by Freeway. Just where
HTML code is inserted depends upon how the Action is coded. However,
this is a fairly blunt approach which doesn’t exploit the potential of
JavaScript to its full. If you’ve mastered the basic Actions explained in the
first part of this document, ‘Writing Freeway Actions: 1: Basic Actions for
Freeway 2 and Freeway 3’, you’re now ready to adopt a new and more
powerful approach to how you write Actions.

At the heart of Freeway 3 is the very same JavaScript ‘engine’ that drives
modern Web browsers. Because of this, Actions can interact with a
Freeway document at a very ‘low level’ and can, through a number of
predefined terms, work with Freeway to query, add or remove content from
the final pages. We’ll now look at how you can control the interaction of
Actions with your Freeway document as it generates HTML code.

The evolution of Actions

Let’s think of Freeway’s Actions technology as some kind of physical
construction: This ‘building’ has three distinct floors. As you go higher, each
level is defined by a distinct increase in sophistication, capability, and
consequently, productivity.

The earliest ‘Actions’ are represented by the ground floor: these are not
true Actions, but forerunners – which are called the ‘include’ (or ‘.inc’)
format.

Basic Actions
On the first floor we encounter Actions, introduced in Freeway 2. These
Actions allow HTML code to be merged with the HTML code that Freeway
generates, in a process not unlike that of the ‘mail merging’ of data. All the
Actions that you have explored so far – in the first part of this document –
are of this type. They are what we have termed ‘basic Actions’. They run in
both Freeway 2 and Freeway 3, but do not take full advantage of the ability

25

of Freeway 3 to allow Actions to interact with the intermediate stages of
HTML code generation.

Advanced Actions
On the top floor we find advanced Actions, which will only run on Freeway
3. At the heart of Freeway 3 lies a JavaScript engine, and through the use
of Actions, we can interrogate this engine to find out what code it is
generating, and depending on what’s being generated, Actions can make
changes to the HTML output.

By using JavaScript in the Action code to generate output, there are two
ways in which Actions modify the output that Freeway generates. We have
already explored the first of these: that of adding HTML to the Freeway’s
HTML output. The second involves interacting with the intermediate stages
of HTML generation from the Freeway document. Actions are able to do
this, because Freeway 3 converts Freeway documents to HTML text via a
number of distinct stages. The key intermediate stage is the generation of a
tag tree. Advanced Actions then interact with this tree of HTML tags; after
this, the tag tree is converted into HTML text.

Advanced Actions are programs, written in JavaScript, that run at specific
stages in the generation of the tag tree. In running, they may generate
HTML or JavaScript (not to be confused with the JavaScript which
comprises the Actions themselves). The code generated by advanced
Actions is then inserted into the tag tree as the tag tree is, stage by stage,
converted into HTML.

This is quite difficult to conceptualise – the key point here is that once an
advanced Action has interacted with the tag tree, the tag tree remains,
essentially, so that further advanced Actions may interact with it. This gives
tremendous versatility to the Actions, allowing them to modify each other’s
effects, and allowing a number of Actions to interact with the same object.

Tags and tag trees

Now let’s look at exactly what we mean by ‘tag tree’. You may already be
aware that HTML code tells the browser how to format a page by the use of
tags. We’ll first look at tags.

26

Tags
HTML tags are often English words (such as ‘blockquote’) or abbreviations
(such as "p" for paragraph), but are distinguished from other text as through
being bounded by angle brackets. For example, the ‘paragraph’ tag is
represented by <p>. The ‘blockquote’ tag is represented by <blockquote>.
Some tags determine how the page is formatted when viewed on a
browser; for example, <p> begins a new paragraph. Other tags determine
how text is formatted; for example, makes text bold. Some tags provide
information to the browser that doesn't appear on the page itself; for
example, the page title is bounded by <title> tags.

When Freeway generates HTML code from your Freeway document, it first
creates these HTML tags. Each tag represents an element or characteristic
of the page when the HTML is interpreted by a browser. It is these tags that
are modified by advanced Actions. To see how Actions do this, one first
needs to appreciate the concept of a tag tree.

Tag trees
Every Web page contains certain items, and possesses certain properties.
such as a background, images, buttons and so on. These items or
properties in turn contain their own items, or possess their own properties.
The overall layout of the page is most clearly represented as a tree – a tag
tree.

Freeway generates HTML code in the same way that you would generate
HTML if you had to do it manually – if you were given an accurate diagram
of the page to be converted into HTML. Freeway first makes a list of all the
items to be created on the page. This list is the start of a tag tree, and
comprises a list of pairs of tags, each pair of tags representing an item.
Some items contain other items, in which case Freeway then inserts
another pair of tags for each new item between the pair of tags that define
the parent item. These pairs of tags may be thought of as branches on the
tree.

Let’s build a tag tree for a background page has three buttons. The
language of our tree isn’t HTML – it’s English – so it allows you to see
what’s going on:

27

<:open tag for background page:>

<:open tag for first button:>

<:close tag for first button:>

<:open tag for second button:>

<:close tag for second button:>

<:open tag for third button:>

<:close tag for third button:>

<:close tag for background page:>

However, each button may have three images apportioned to it: one image
for the button’s ‘resting’ state, one for when the mouse pointer is rolled over
it, and one for when the button is pressed:

<:open tag for background page:>

<:open tag for first button:>

<:open tag for first image:>

<:close tag for first image:>

<:open tag for second image:>

<:close tag for second image:>

<:open tag for third image:>

<:close tag for third image:>

<:open tag for first button:>

<:open tag for first image:>

<:close tag for first image:>

<:open tag for second image:>

<:close tag for second image :>

<:open tag for third image:>

<:close tag for third image:>

<:close tag for first button:>

<:open tag for third button

<:open tag for first image:>

<:close tag for first image:>

<:open tag for second image:>

<:close tag for second image:>

<:open tag for third image:>

<:close tag for third image:>

<:close tag for third button:>

<:close tag for background page:>

Of course, this is extremely simple, but we hope that it conveys to you what
is meant by a ‘tag tree’.

28

How Freeway generates a tag tree
The first tags, in the above example, ‘< : open tag for background page,
close tag for background page: >’ , represent the first level of the tag
hierarchy. In practice, these would be the items and properties of the
background page. As the HTML is generated, more tags are added to
certain ‘branches’ in the tree. This means that more tags are added
between existing tags. Freeway populates all the way down to the end of
each ‘branch’ as it writes each part of the tag structure – so the tag
structure in our example above would be output by Freeway as ‘< : open
tag for background page < : open tag for first button <:open tag for first
image…etc.’

Freeway needs to do this so that it didn’t have to go back after having
written each hierarchy of tags in order add another hierarchy, then go back
again to add another hierarchy.

Once Freeway 3 has assembled the complete tag tree, advanced Actions
are able to question tag structures, and Action after Action can work on the
same item. The output from one Action instantly becomes available to the
next one to be launched, and as each Action is run on the tag tree, complex
code structures can be built up, with the Actions effectively being the
building blocks of this code.

How the tag tree is coded in Freeway
In the tag tree, HTML tags are represented by ‘fwTags’.

The presence ‘fwTags’ in the tag tree indicates the presence of tags. As an
Action writer we can directly manipulate these tags.

Actions act at different stages of HTML production from the tag tree
The generation of HTML from a tag tree is carried out over a number (over
20!) stages. At any one of these stages an Action can take control of the
code generation.

Any tags that are present in the tree are available for inspection and
modification by an Action; however, just when an Action runs on the tag
tree is important: An Action will not see tags that have yet to be created,
neither will it see tags that are represented as HTML.

29

Actions can only be viewed on publishing or previewing
Whenever the page is published or previewed the tag tree is generated
from your Freeway document. It is at this point that Actions are able to act
on the tags. This is why the effects of Actions can’t be viewed on your
Freeway document – the Actions have nothing to act upon, as the tags are
simply not present before the tag tree is generated.

As was stated at the start of this section, A tag tree isn’t generated from
your Freeway document in one, simple stage – in fact, the tag tree is
generated in more than twenty distinct stages, and Actions may act at each
of these stages. The diagram below shows each of these stages, and
where they may be interrupted by Actions:

Walking through a simple advanced Action
Let’s have a look at a specific Action to see how the tag tree is modified by
its presence.

In this example we’ve written a basic Action that replaces the object it is
applied to with an HTML comment.

<item-action name="Replace image with comment">

<action-javascript>

function fwAtContent()

{

fwDocument.fwWrite("<!-- Image replaced by the 'Replace image

with comment' action ––>");

}

</action-javascript>

</item-action>

<item-action name="Replace image with comment">
tells Freeway that this is indeed an Action file and gives it a name. With this
information Freeway can place the Action item correctly in your Freeway
document

<action-javascript>
tells the JavaScript engine in Freeway to wake up and get ready for the
next line.

30

function fwAtContent() {
Is the start of the main code, and it tells Freeway’s JavaScript engine that
the next bit of code:

fwDocument.fwWrite("<!-- Image replaced by

the 'Replace image with comment' action ––

>");

should replace whatever the Action is applied to. This is quite powerful as
we can use this to easily swap one item for another.

fwDocument.fwWrite
tells the application that the text in quotes needs to be written to the
document.

</action-javascript>

tells Freeway that we are finished with this block of code.

</item-action>
tells the JavaScript engine and Freeway that the Action has finished so that
they can go and get on with other matters.

First the Action has to identify the object that is to have its HTML output
overridden. For example:

fwDocument.fwWrite()
This line of code, if present in an Action, will write data without adding a
new line.

fwDocument.fwWritelnopt()
This line of code will write data followed by a new line if the more readable
option within Freeway is turned on.

fwDocument.fwWriteln()
This line of code will write data followed by a new line irrespective of
whether the more readable option within Freeway is turned on.

If the Action code calls one of the above methods then it will be able to add
text to the output. Anything that you write using these methods will appear
directly in the HTML file.

For example, this Action will add a 1-pt border to an image:

The code here may be broken down as follows:

Each time

31

fwDocument.fwWrite

is called, the location and width of the border to be applied is determined.
The

fwAtContent

method will be called when the tag is written.

<item-action name="Image Border1">
This tells the Freeway HTML compiler that it has encountered an Action –
an item Action (one that is applied to an item in the document) – and that
the item Action has the name ‘Image Border1’.

<action-javascript>
This tells then Freeway compiler to insert HTML code that tells the browser
that it is about to encounter JavaScript.

function fwAtContent()
This line tells Freeway to replace the item’s code with the code we are
about to supply.

{fwDocument.fwWrite('<img');
This line tells Freeway to write to the object img

Each of these lines concatenates parts of the final line of code together into
their final form. We’ve split the lines in this example, but you could have all
of this code in one single fwWrite statement.

fwDocument.fwWrite(' src="', fwFileName(), '"');
This line tells Freeway to write…for all occurrences in the Freeway
document file as named in the closed brackets. Take the name of the
image that the Action is applied to and use this as the source for our new
image.

fwDocument.fwWrite(' border=1');
Set the borders that bound the object ‘<img’ to a width of one point.

fwDocument.fwWrite(' height=', fwHeight);
Set the height of the object ‘<img’ to the height specified in ‘height=’.
Take the height of the item that the Action is applied to and use this value
for the height attribute of the new image.

fwDocument.fwWrite(' width=', fwWidth);
Set the width of the object ‘<img’ to the width specified in ‘width=’.

32

fwDocument.fwWrite(' alt="', fwAltText(), '"');
Take the alt text of the item that the Action is applied to and use this value
for the alt attribute of the new image.

fwDocument.fwWrite('>');
Add the closing angle bracket to the code.

fwDocument.fwWritelnopt();}
This adds a carriage return if the application preferences are set to more
readable.

</action-javascript>
This terminates the JavaScript part of the Action.

</item-action>
Terminates the Action itself.

The above method, although quick and effective is generally regarded as a
destructive method of generating output with an Action. This is because
Freeway is unaware of the code that the Action writes to the tag tree. All
Freeway is aware of is that code is added to the output stream when the
document is published.

A better way of doing this is to specify the tags that are to be added to the
tag tree. Writing Actions takes longer this way, but it is better as further
Actions can alter these tags at any point in the publishing process. Because
the tags are inserted in the tag tree at a ‘root level’ Freeway treats any
extra code as if it was its own and therefore allows other Actions full access
to it.

If we look at a simple HTML page we can start to break this down into items
that our Action will ‘see’:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<html>

<head>

<title>My sample HTML file</title>

</head>

<body>

Hello world!

</body>

</html>

Looking at the tags that make up the above page we can see how we can
access any part of the code by searching for specific tags.

33

For example to extract the title of the page and place this information into a
window that alerts the user of the title (i.e. an alert), we could write the
following Action (presented here line-by-line):

<page-action name="Alert page name">

The above line tells Freeway that the following code is a page-based Action
– an Action that can only be applied to whole pages – and specifies the
name of the page-based Action.

<action-javascript>

The above line activates the JavaScript engine in Freeway.

function fwAfterEndHead(){

This tells Freeway where it should run this code.

In the above example the code runs directly after the application has written
the closing HEAD tag.

As we are only after the TITLE tag in the head anyway we don’t need to
wait for the application to generate all of the page before we start working
on the file. In general it’s best to jump in as soon as you can to alter the
code. Jump in too soon and the code won’t have been created yet (and the
Action will return nothing!). Jump in too late and you risk any corrections
you make being missed by any other Actions applied to the page.

var myTitle = fwDocument.fwTags.fwFind("TITLE");

This line sets up a variable that holds a reference to the TITLE tag.

var myTitleText = myTitle.fwFindAllContent();

Again we define a variable and store the contents of the TITLE tag inside it.

alert(myTitleText);

Finally alert the user with the name of the page.

}

This line tells the application that we are done with our function.

34

</action-javascript>

This tells the application that we have now finished with the JavaScript
engine inside Freeway.

</page-action>

This line closes the Action and tells Freeway that it can get on with other
matters.

Each branch represents an object – and in HTML code this is represented
as a tag. Note that some branches lead to further branches, just as some
objects on the Web page contain other objects.

Attributes
If tags are the branches of the HTML tree then attributes are the leaves that
bring character and form to the structure. Each attribute defines how a tag
will display its data. For example the image tag which is represented by
 in HTML. By adding the ‘src’ (source) attribute to it and giving the
source attribute a value we get . When a Web
browser is faced with this line of HTML it downloads the image and displays
it.

Once further attributes of width and height are added to the IMG tag, the
look and representation of this item is further defined.

How Actions work with tags
In order to modify the tags in a Freeway document, an Action must first
locate which tags are to be modified. In the first part of this document we
simply added to the Freeway’s HTML output without looking for specific
tags. However, as you require more of your Actions you’ll code them so as
to search for specific tags.

Part of the coding in most Actions searches the tag tree of Freeway’s
output for specific tags.

For example, this JavaScript fragment - part of an Action - will locate the
HTML <body> tag so an attribute of the body tag – the background colour
of the HTML page – can be modified.

35

<body bgcolor=”#ffffff”>

The above line of HTML sets the background colour (‘bgcolor’) of the page
(‘body’) to ”#ffffff”. If an Action is to modify this, the ‘body’ tag needs to
be located; once located, the attribute of the tag can be changed. The
following line in an Action does all this:

var bodyTag = fwDocument.fwTags.fwFind("body")

First the search:

fwDocument: This means Let’s look at the current document.

fwTags: In the document, let’s look at the tag tree.

fwFind: In the tree let’s search for ‘body’.

Once the search is complete, the attributes of the <body> tag are set to
whatever value the variable bodyTag holds.

Let’s look at another line from an Action:

var imageTag = fwDocument.fwTags.fwFind("img", fwItem)

This sets the attributes of the tag to the value of the variable
imageTag. The tag affected is the first tag that belongs to the
item onto which the Action is applied.

Modifying the tags
Action code such as that described immediately above means that by
setting the properties within the variables used in the code, you can set or
clear the attributes – i.e. properties - of tags.

For example, the HTML tag <body bgcolor=”#ffffff”> has one attribute,
bgcolor. The value held by the variable bodytag.bgcolor is thus “#ffffff”

Let’s look at another example: This Action will initially locate the correct tag.
This is the tag that belongs to the item where this Action is to be
applied. Having located the correct tag, it then first sets the border to a
thickness of 1 point.

36

// find the first tag that belongs to item
// onto which this Action is applied
var imageTag = fwDocument.fwTags.fwFind("img", fwItem);

// and set the border to 1

imageTag.border=1;

Some attributes are not designed to have a value, such as the ‘no resize’
tag of a frame. If you wish to have an attribute in a tag that does not have a
value, then you need to set the attribute (which must have the same name
as the tag) to no characters at all – i.e. an empty string.

The following Action sets all the <frame> tags so that they have a ‘no resize’
attribute.

<frame src="top.html" name="top" scrolling=no noresize>

<page-action name="Make All NoResize">

<action-javascript>

function fwAfterEndBody()

{

var frameTags=fwDocument.fwTags.fwFindAll("frame");

for (var i in frameTags)

frameTags[i].noresize="";

}

</action-javascript>

</page-action>

Let’s dissect this Action:

<frame src="top.html" name="top" scrolling=no

noresize>

Set the frame search variable ‘frame src’ to ‘top.html’; the top
component refers to the HTML tag <top>; the ‘html’ component means
that we’re searching the HTML text. The remainder of the line sets the
‘name’ variable to ‘top’.

<page-action name="Make All NoResize">

This identifies the name of the Action.

<action-javascript>

This informs Freeway that the Action is in JavaScript.

37

function fwAfterEndBody()

This defines the function fwAfterEndBody() to be applied to the document.
This function, like all functions is defined between the ‘{‘ and ‘}’ brackets
which follow.

{

var frameTags=fwDocument.fwTags.fwFindAll("frame");
This locates all instances of <frame> tags in your document, and sets them
to the value of the ‘frameTags’ variable.

for (var i in frameTags)

frameTags[i].noresize="";}
This ensures that the function is applied for each occurrence of the of
<frame> tags.

</action-javascript>
This is the closing tag for the Action – text following this is not a part of the
Action.

</page-action>
This is the closing tags for the area of the page that holds all the Actions.
Text following this is not a part of any Action.

38

In this example, for each image that is generated the Action will set the
border for the item to 1.

<item-action name="Image Border1">

<action-javascript>

function fwAfterEndBody()

{

// find all tags that belong to the item

// onto which this action is applied

var imageTags=fwDocument.fwTags.fwFindAll("img", fwItem);

// set the border to 1

for (var i in imageTags)

imageTags[i].border=1;

}

</action-javascript>

</item-action>

The example below sets the border tag of successive tags on the
page to an incrementing amount. That is, the first will have a border
of 1, the second will have a border of 2, and so on.

<page-action name="Border++">

<action-javascript>

function fwAfterEndBody()

{// find all tags on this page

var imageTags =

fwDocument.fwTags.fwFindAll("img");

var j = 1;

for (var i in imageTags)

// set the border

{imageTags[i].border=j;

// increase the border width

j++;}}

</action-javascript>

</page-action>

Removing attributes of tags
If you wish to remove an attribute entirely you can do this by setting the
property of the same name to ‘null’ This will delete the attribute.

39

The following Action will remove the width and height attributes from all the
 tags on the page.

<item-action name="Remove Width & Height">

<action-javascript>

function fwAfterEndBody()

{

// find all tags that belong to the item

// onto which this action is applied

var imageTags = fwDocument.fwTags.fwFindAll("img", fwItem);

// remove the width and height

for (var i in imageTags)

{

imageTags[i].width=null;

imageTags[i].height=null;

}

}

</action-javascript>

</item-action>

The following Action will remove the ‘align’ attribute from all the images
that have been generated from the item to which the Action is applied.

40

<item-action name="Strip Align">

<action-javascript>

function fwAfterEndBody()

{

var imgTags=fwDocument.fwTags.fwFindAll("img", fwItem);

for (var i in imgTags)

{

var img = imgTags[i];

img.align = null;

}

}

</action-javascript>

</item-action>

Interaction of body tag attributes with item tags attributes
Sometimes it is useful to be able to affect the page tags from an Action
applied to an item.

Example: This Action will set the page to have a background image that is
the same as an image in a specified item.

41

<item-action name="BG Image test">

<action-javascript>

function fwAfterEndBody()

{

// find the body tag

var bodyTag = fwDocument.fwTags.fwFind("body");

// find the first image tag applied to this Action

var imageTag = bodyTag.fwFind("img", fwItem);

// set page background image to source file of the image

bodyTag.background=imageTag.src;

}

</action-javascript>

</item-action>

Qualities of the tag tree

About the tag tree

The tag tree generated by Freeway 3 is a partial tree. This means that not
all the tags that appear in the output can be searched for and found by
fwFind or fwFindAll. For example if you call the method, fwFind("img"),
Freeway will not return any of the tags for _ClearGifs. _ClearGifs
are the invisible GIF images Freeway uses for reinforcing tables in the
layout. Generally these layout tables are not available as tags to the
Actions writer. The reason is to prevent Actions from being able to destroy
the layout tables which Freeway creates. Under some circumstances you
may need to do things such as remove all the content of a page, but note
that you can do this by deleting all the content in the body area. Similarly
the tags that are associated with text, the formatting of text and the text
itself are not accessible in the tag tree.

As an Actions writer it’s important that you’re aware that not all tags are
available for modification.

Marker Tags
Whenever output from an item is generated, Freeway adds special empty
tags as markers in the tag tree, to help you locate the output for that item.
These are termed marker tags. Typically a given item on the Freeway page
results in one or more table cells being generated. When Freeway

42

generates the code for the item it encloses the content in a marker tag. You
can locate this tag using fwFind() in the normal way. These tags are not
output as HTML.

The following example will generate an alert dialog showing the HTML that
will be generated by the item to which the Action is applied.

<item-action name="Show Content">

<action-javascript>

function fwAfterEndHTML()

{

itemContents = fwDocument.fwTags.fwFindAll("", fwItem);

for (var i in itemContents)

alert(itemContents[i].fwToHTML());

}

</action-javascript>

</item-action>

The example below finds the marker tag that encloses the code output for
an item, converts the tag to text and then within that text substitutes any
occurrence of the text "_test_" with the parameter "MyText" and outputs the
processed text.

43

<item-action name="Replace Text">

<action-text name="My Text" default="Hobson">

<action-javascript>

function fwAfterEndHTML()

{

firstTag = fwDocument.fwTags.fwFind("", fwItem);

if (firstTag)

{

// find the enclosing tag

enclosing = firstTag.fwEnclosing;

// convert it to text

var tagAsText = firstTag.fwToHTML();

// replace anything with _test_

tagAsText = tagAsText.replace(/_test_/g,fwParameters["My

Text"]);

// insert it after "firstTag"

enclosing.fwAddRaw(firstTag, tagAsText);

// delete the original tag

firstTag.fwDelete();

}

}

</action-javascript>

</item-action>

Timing out
Freeway will automatically terminate the running of any Action code that
becomes caught in an infinite loop, when the Freeway document which
refers to the Action is previewed or published. It does this by maintaining an
internal timer that monitors how long the Action code has been running.
The amount of time that any item of Action code can run before it is
terminated is determined by the global property fwTimeout. This time-out
facility is included to prevent Freeway from locking up should it try to run an
Action which has an infinite loop in its coding.

Each time a user method (such as fwAtContent) is called the timer is reset.
So if your page has several copies of the same Action, the timer will be

44

reset each time the same user method is called, regardless of whether it
has been called before.

The timer will be paused whenever user intervention is required (for
instance to confirm an Alert dialog or to locate a file). The timer will also
pause if you execute an OSA script (such as AppleScript).

In this example, the Action is written to loop endlessly when published.
However when Freeway detects that the fwAtContent method has
executed for longer than the period specified by fwTimeout , so Freeway
will stop executing the Action code and display an error dialog. The Action
definition will be marked as having an error.

<item-action name="Infinite Loop">

<action-javascript>

function fwAtContent()

{

for (var i = 0; true; i++)

{

var b = i;

}

}

</action-javascript>

</item-action>

To reset the Action after it has been marked as having an error, you will
need to force Freeway to reload the Action definition, either by quitting or
modifying the Action file.

Persistence
Persistence defines how long properties persist (or remain) after they have
been defined.

None of the properties that you set as an Actions writer are persistent –
once the Action code has executed, they no longer exist. You need to be
aware that you can’t guarantee that properties you set will persist across
the generation of different pages while publishing the site, or when
publishing subsequently. Freeway will dispose of properties when it is
required to free up memory. However, any properties required to generate
the current page will be secure.

45

If you need to store values and have those values saved in the Freeway
document, you can do this through internal Action parameters that are
invisible to the user. You can ensure that a parameter is not visible by
adding a var property.

In the following example, the parameter called ‘Last Page’ will not be
present in the Actions palette, but values can be stored by setting the
fwValue property of the parameter using JavaScript:

<action-url var name="Last Page"/>

You may find it useful to remove the var property while developing your
Action, so you can see the values that you are storing in the Actions
palette.

Resources:

Additional resources for the Actions writer are:

• Writing your own Actions: Reference Guide. This is a detailed listing
of each of the Freeway functions, what they do, with examples of
their implementation.

• The Freewaytalk mailing list (to join visit
http://www.softpress.com/Freewaytalk/)

• The Actions Developer mailing list (to join visit
http://www.softpress.com/actions/

• Independent Freeway Actions site with lots of useful freeware or
shareware Actions: http://www.Freewayactions.com

